Solid Waste

Mounds of garbage are a common sight today. Waste thrown is omnipresent in the form of rotting piles that dot our landscape, foul our rivers and pollute our wells and lakes. Even the idea of a quaint, clean village is no longer true because trash has overcome the rural-urban divide very successfully. What this waste, why is more & more of it being produced and exhibited, and how have we become adept at this? Most importantly, can we as individuals and as a society reduce this growing menace?

What is Solid Waste?

Solid waste is the unwanted or useless solid materials generated from human activities in residential, industrial or commercial areas. It may be categorised in three ways. According to its:

  • origin (domestic, industrial, commercial, construction or institutional)
  • contents (organic material, glass, metal, plastic paper etc)
  • hazard potential (toxic, non-toxin, flammable, radioactive, infectious etc).

Solid Waste Management reduces or eliminates the adverse impact on the environment & human health. A number of processes are involved in effectively managing waste for a municipality. These include monitoring, collection, transport, processing, recycling and disposal. The quantum of waste generated varies mainly due to different lifestyles, which is directly proportional to socio economic status of the urban population.

Numbers!

In metro cities in India, an individual produces an average of 0.8 kg/ waste/ person daily. The total muicipal solid waste (MSW) generated in urban India has been estimated at 68.8 million tons per year (TPY) (0.573 million metric tonnes per day (MMT/d) in the year 2008). The average collection efficiency of MSW ranges from 22% to 60%.

MSW typically contains 51% organic waste, 17%  recyclables, 11% hazardous and 21% inert waste. However, about 40% of all MSW is not collected at all and hence lies littered in the city/town and finds its way to nearby drains and water bodies, causing choking as well as pollution of surface water. Unsegregated waste collection and  transportation leads to dumping in the open, which generates leachate and  gaseous emissions besides causing nuisance in the surrounding  environment. Leachate contaminates the groundwater as well as surface water in the vicinity and gaseous emissions contribute to global warming.

Types of Solid Waste

It can be classified into different types depending on their source:

  • Municipal Solid Waste (MSW): It consists of household waste, construction and demolition debris (CnD), sanitation residue, and waste from streets, generated mainly from residential and commercial complexes. As per the MoEF it includes commercial and residential waste generated in municipal or notified areas in either solid or semi-solid form excluding industrial hazardous wastes but including treated bio-medical wastes;
  • Industrial Solid Waste (ISW):  In a majority of cases it is termed as hazardous waste as they may contain toxic substances, are corrosive, highly inflammable, or react when exposed to certain things e.g. gases.
  • Biomedical waste or hospital waste: It is usually  infectious waste that may include waste like sharps, soiled waste, disposables, anatomical waste, cultures, discarded medicines, chemical wastes, etc., usually in the form of disposable syringes, swabs, bandages, body fluids, human excreta, etc. These can be a serious threat to human health if not managed in a scientific and discriminate manner.

Solid waste management

  1. Centralised method: This method involves collection of municipal waste from all over the local area and by means of landfilling, dump outside the city/nagar panchayat limits. This process looks at door-to-door collection of solid waste by waste pickers who hand over to the collection team who then discard the collected waste in the landfill. The waste pickers are employees of the Municipal Corporation or Nagar Panchayat. The collection team is generally contracted out by a tendering process.

  2. De-centralized method: This is a model seen in a few places like Suryapet in Andhra Pradesh and Bangalore in Karnataka. The waste is collected ward-wise and is segregated at source into bio-degradable and non-biodegradable. The biodegradable waste is composted at a nearby facility by different methods of aerobic and anerobic composting. The non-biodegradable waste is further categorised into paper, plastic, metal and other waste and then further collected by recyclers for up-cycling or downcycling of products

Treatment methods for solid waste

  • Waste to Energy Plant in Okhla, DelhiThermal treatment:  Incineration is the combustion of waste in the presence of oxygen, so that the waste is converted into carbon dioxide, water vapour and ash. Also labeled Waste to Energy (WtE) method, it is a means of recovering energy from the waste. It's advantages include waste volume reduction, cutback on transportation costs and reduction of greenhouse gas emissions. However, when garbage is burned, pollutants, such as mercury, lead, dioxins may be released into the atmosphere, and cause health issues.
  • Pyrolysis and gasification: In this method, thermal processing is in complete absence of oxygen or with less amount of air.
  • Biological treatment methods:  This involves using micro-organisms to decompose the biodegradable components of waste. The 2 types of processes: Aerobic: This needs the presence of oxygen and includes windrow composting, aerated static pile composting & in-vessel composting, vermi-culture etc. Anaerobic digestion: Takes place in the absence of oxygen.
  • Landfills and open dumping:  Sanitary landfills: It is the controlled disposal of waste on land in such a way that contact between waste and the environment is significantly reduced and the waste is concentrated in a well defined area. Dumps are open areas where waste is dumped exposing it to natural elements, stray animals and birds. With the absence of any kind of monitoring and no leachate collection system, this leads to the contamination of both land and water resources. 

Integrated Solid Waste Management (ISWM): 

Recycling

Recycling is when waste is converted into something useful. It reduces the amount of waste that needs to be treated, the cost of its handling, its disposal to landfills and environmental impacts. It also reduces the amount of energy required to produce new products and thus helps conserve natural resources. Upcycling and downcycling are two common words used when it comes to recycling. Upcycling implies upgrading of a commodity by different processes of recycling. An example of upcycling is to make roads out of cheap plastic. Downcycling implies downgrading a commodity by different processes of recycling. An example of downcycling is breaking down of high quality plastics at high temperature into different lower quality plastics.

There are a large set of informal waste collectors in India. They are called local waste dealers or 'Kabadiwallahs'. They collect and sort dry waste into aluminium, plastic, paper, glass, etc. Each waste has a price fixed in the waste market. In some cases, these local waste dealers have tie ups with waste pickers who supply to them the waste from nearby areas. In addition to the waste pickers, the dealers also collect dry waste from individuals, apartments and institutions.  

Responsibility & stakeholders

Solid Waste Management is a state subject and it is the responsibility of the state government to ensure that appropriate solid waste management practices are introduced in all the cities and towns in the state. However, SWM is a municipal function and it is the urban local bodies (ULB) that are directly responsible for it. The ULBs are required to plan, design, operate, and maintain the SWM in their respective cities/towns. India’s 4378 municipalities spend a lot of money handling waste. Between 10% to 50% of the municipal budget is allocated for SWM and between 30% to 50% of the total staff are typically engaged in SWM. This critical service, if performed poorly, results in deterioration of health, sanitation and environmental degradation. Incorrect choice of technology, lack of public participation, financial constraints, institutional weakness, are factors that prevent a ULB from providing satisfactory service. The ULBs need both support and guide to mange the solid waste in a scintific and cost effective manner.

The role of the Government is broadly to formulate policy guidelines and provide technical assistance to the states/cities whenever needed. It also assists the state governments and local bodies in human resource development and acts as an intermediary in mobilizing external assistance for implementation of solid waste management projects. 

There are several NGOs, waste trade unions and experts who have become crucial stakeholders. A few well recognised people and organisations are: Chintan in Delhi, Swacha in Pune, Stree Mukti Sangathan in Mumbai, Solid Waste Management Round Table and Hasiru Dala in Bangalore.  

Rules and regulations associated with SWM
Under the 74th Constitutional Amendment, Disposal and managemenf of Municipal Solid Waste is one of the 18 functional domains of the Municipal Corporations and Nagar Panchayats. The various rules and regulations for solid waste management are:

  1. The Bio-Medical Waste (Management And Handling) Rules, 1998
  2. Municipal Solid Waste (Management And Handling) Rules 2000
  3. The Plastic Waste (Management And Handling) Rules, 2011
  4. E-Waste (Management And Handling) Rules, 2011

There are other court cases that find their importance in terms of Solid Waste Management in India:

  1. Almitra Patel vs. Union of India
  2. B.L Wadhera vs. Union of India.
  3. Judgement of Karnataka High Court towards Mandatory Segregation at Source

Ragpickers/ manual scavenging

Waste Management also has several informal players such as ragpickers. They work in dump sites, garbage spots in local areas and trade in their collected waste with local dealers. These local dealers are called Kabadiwalahs.The large network of informal sector also aids in managing of waste effectively at local levels as the Kabadiwallahs are connected to the formal group of recyclers who come and pick up the bulk quantity of waste. There is a National Body of Ragpickers in India. They are called the NSWAI- National Solid Waste Association of India. Formed on 25th January 1996, the association is also a member of the International Solid Waste Association (ISWA), and provides a forum for the exchange of information and expertise in the field of Solid Waste Management at the international level.

In recent times, Prohibition of Employment as Manual Scavengers and their Rehabilitation Bill, 2013 has been passed in the Lok Sabha in September 2013.

Recently, Satyamev Jayate featured an episode that gives a brief understanding about the situation of Solid Waste Management in India. Watch the video below.  

 

How each one of us can reduce waste
Waste is everybody's responsibility. A waste reduction strategy can be incorporated by each of us whether at home or at work by following the 4 Rs principle. This will not only reduce the amount of solid waste going to landfill, but turn waste into a resource & also save our fast depleting natural resources.

Reduce: At home you can begin by purchasing things with lesser packaging, more durable & refillable items, carry your own shopping bag, avoid disposable items and reduce the use of plastics. At office one can cut down on paperwork, use electronic mail for communication.

Reuse: You can donate your old clothes, books, phones and lots more. You can reuse old bottles, jars as storage bins and buy rechargeable items rather than disposable ones.

Recycle: Segregate your waste for better disposal and purchase recycled/ green products. A ton of paper from recycled material conserves about 7,000 gallons of water, 17-31 trees, 60 lb of air pollutants and 4,000 KWh of electricity. You can recycle or compost your organic waste directly at source- leaving very little waste to reach the landfill. Watch this video of Vani Murthy, who composts in her own apartment.

Recovery or reclaim: Various mechanical, biological and caloric systems and technologies can convert, reprocess or break up waste into new materials or energy. This means turning waste into fuel for manufacturing processes or equipment designed to produce energy. For example, the methane caused by rotting materials in dump sites can be recycled. Of course, this “R” is difficult for individuals to apply and applies more for industries or towns with a high volume of waste to manage.

 

Term Path Alias

/topics/solid-waste

Featured Articles
May 15, 2023 A sustainable framework is needed for a healthy and safe working environment in the informal plastic waste recycling sector in India
Informal plastic waste recycling firms has increased significantly since the 1990s (Image: Andreas, Pixabay)
May 11, 2023 Segregation of dry and wet solid waste is a critical issue in the Indian context
EIA suggests lower GHG emission of waste-to-energy plants over landfill (Image: Norbert Nagel,Wikimedia Commons)
July 18, 2021 A new report on a baseline assessment of waste in Haridwar and Rishikesh, two major Ganga cities in Uttarakhand tries to characterize solid and plastic waste
There is a need to develop a robust methodology for inventorizing waste (Image:  Prylarer, Pixabay)
December 26, 2020 What are the lessons learnt from COVID-19 pandemic on effective waste and resource management?
The management of waste is vital to minimize long-term risks to human and environmental health. (Image: Pasi Mäenpää, Pixabay)
December 11, 2019 Policy matters this week
Polythene bags and solid waste left behind as water recedes in the Ganga river. (Source: India Water Portal on Flickr)
December 11, 2019 Dry toilets have long been hailed as a sustainable solution to the sanitation and waste management crisis facing India today, but have been overshadowed by more modern toilet designs.
A traditional dry toilet. Image: India Science Wire
Transformation of Surat, Gujarat, to a second cleanest city in India
Surat in Gujarat achieves remarkable transformation as one of the cleanest cities in less than two years after the plague of December 1994 due to proper municipal management Posted on 11 May, 2009 04:27 PM

This case study by All India Institute of Local Self Government deals with the transformation of Surat, from a city infested with plague to second cleanest city in India.  This transformation was largely due to improved municipal management, which was brought about by a strong leadership.

Agra: Yamuna river trash cleanup 2009
Agra youth clean dirty Yamuna ghats to draw attention of candidates to river pollution Posted on 23 Apr, 2009 11:45 AM

 41

Ahead of the Lok Sabha polls, hundreds of students of several schools along with senior citizens cleaned up Poiya Ghat Sunday morning, picking up rags and used polythene bags, to focus attention on river pollution which candidates of various political parties have chosen to ignore.

Brij Khandelwal, programme convener of the Yamuna Foundation and Rivers of the World Foundation, said apart from students involved in the My Clean Agra initiative, a large number of other voluntary groups and organisations were involved in Sunday's programme which specifically targeted the politicians for failing to clean up the cities and the rivers of India.

"No political party has bothered to say a word about how they would save a dying river and rejuvenate it or restore its original glory," said Subhash Jha and Haridutt Sharma of the Yamuna Foundation for Blue Water.

Ph.D in Ecological Sanitation by a student at the University of Agricultural Sciences, Bangalore
Ph.D in Ecological Sanitation by a student at the University of Agricultural Sciences, Bangalore Posted on 16 Apr, 2009 11:21 AM

Using YouTube effectively - A citizen-activist's movie highlighting the problem of an abandoned pond in Gurgaon
A excellently taken YouTube movie that highlights the problem of an abandoned talaab in water-starved Gurgaon in New Delhi.
Posted on 19 Mar, 2009 09:08 AM

Press releases - Ganga river basin authority : SANDRP
A series of Press Releases from sources indicate the progress on the matter of the Ganga River Basin Authority. Posted on 26 Feb, 2009 10:47 AM


A series of Press Releases from sources indicate the progress on the matter of the Ganga River Basin Authority. It makes for an informative read with a candid discussion in the comments section!


Ganga River Basin Authority for Comprehensive Management of the Ganga Basin

PIB Friday, February 20, 2009
Ministry of Environment and Forests

 AUTHORITY ENSURES DEVELOPMENT REQUIREMENTS IN SUSTAINABLE MANNER ENSURING ECOLOGICAL FLOWS IN GANGA

The Government today announced the setting up of a National Ganga River Basin Authority. A statement to this effect was made in Parliament by Shri Namo Narain Meena, Minister of State in the Ministry of Environment & Forests. A Notification in this regard is also being issued by the Government.

Overview of the 2008 Kosi flood situation from Samajik Shaikshanik Vikas Kendra
Samajik Shaikshanik Vikas Kendra (SSVK) an NGO in Bihar illustrates the real picture of Kosi flood and the post disaster conditions in the state. Posted on 02 Feb, 2009 09:01 PM

The following article is the latest update of an overview of Kosi floods by SSVK. It reveals the ineffective handling and inadequate supply of materials by the Government in the flood hit regions. It also points out the activities done by various organizations and SSVK itself.

DEWATS Newsletter: Volume 1|Issue 5|December 2008
DEWATS Newsletter: Volume 1|Issue 5|December 2008 Posted on 27 Dec, 2008 10:13 AM

 untitled2.jpg The DEWATS Newsletter, published bi-monthly by BORDA in Bremen, constitutes a compilation of links to articles about dewats and sanitation from the BNS N

National Urban Sanitation Policy
National Urban Sanitation Policy Posted on 01 Dec, 2008 01:16 PM

The Government of India, Ministry of Urban Development recently released the National Urban Sanitation Policy. We attach the document below, as well as key excerpts. We request you to add your comments below regarding the provisions of the Sanitation Policy. Click here to view the National Urban Sanitation Policy The document is quite comprehensive and detailed. It lays out a vision for urban sanitation in India. It instructs states to come up with their own detailed state-level urban sanitation strategies and City Sanitation Plans. It moots the idea of totally sanitised and open-defecation cities as a target and the setting up of a multi-stakeholder City Sanitation Task Force to achieve this. Environmental considerations, public health implications and reaching the unserved and urban poor are given significant emphasis in the policy. Funding options are laid out including direct central and state support including through existing schemes, public-private partnerships, and external funding agencies. It directs that atleast 20% of the funds should be earmarked towards servicing the urban poor. The Center also plans to institute awards to the best performing cities, reminiscent of the Nirmal Gram Puraskar awards for villages. Important Excerpts from the Policy: 

Bottled water for Rs. 12/ : Can the environment afford it ?
Bottled water for Rs. 12/ : Can the environment afford it ? Posted on 15 Nov, 2008 10:09 AM

An average trekker leaves behind approximately 100,000 kgs of water bottles per year. During average trekking of a week , trekker drinks up to 50 litres of water. Each trekker leaves behind 50 PET bottles along the track. PET bottles can take 1,000 years to biodegrade. Nine out of 10 water bottles end up as garbage or litter, and that means millions per day. PET bottles require massive amounts of fossil fuels to manufacture and transport, leaving behind carbon foot prints. Billions of bottles show up at landfills every year. The entire energy costs of the lifecycle of a bottle of water are equivalent, on average, to filling up 250 ml of each bottle with oil. "Making bottles to meet Americans' demand for bottled water requires more than 1.5 million barrels of oil annually, enough to fuel some 100,000 US cars for a year," according to the study. "Worldwide, some 2.7 million tons of plastic are used to bottle water each year."

25 painless ways to reduce your water consumption
25 painless ways to reduce your water consumption Posted on 04 Aug, 2008 12:03 AM

Water conservation is an important part of responsible living. Water is a precious resource which is not to be squandered. Fortunately, there are a number of really easy ways to save water without a whole lot of hassle, and some of the best are listed here!

In the Kitchen Cut down on water usage in your kitchen using these methods. 1. Wash only on a full load: This is true for both washers and dishwashers. By washing in bulk, you'll cut down on the number of cycles you need to run. Also important to keep in mind is the fact that most dishwashers on a full load can clean dishes more efficiently than a hand wash. 2. Cut down on your disposal: Instead of using your disposal, start a compost pile for food waste. 3. Buy foods close to their natural form: Water is needed to produce just about everything from Coke to boxed mashed potatoes. You can cut down on your water consumption by avoiding processed foods that require lots of water to make.