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Abstract 

 

Environmental justice concerns about adverse impacts of extractive mining industries 

challenge their claim of broad-based development. However, empirical evidence of negative 

externalities attributable to mining enterprises is thin. In this paper, we examine the burden of 

Acute Respiratory Illness and Malaria among villagers along a gradient of proximity to mining 

areas to generate evidence pertinent to the debate on environmental health and social justice. By 

focusing on health outcomes as human development indicators, the study also reflects on 

whether the ‘resource curse’ that has been posited at the country level also has micro footprints.  

 

The analysis combines 600 household interviews conducted in 20 villages with GIS data 

on locations of mines and villages in India. Self-reported health data on incidence and workdays 

lost due to Acute Respiratory Illness and Malaria are outcomes of interest.  Estimation results for 

incidence (Probit) and workdays lost (3SLS and Zero-Inflated Negative Binomial) indicate that 

villagers living closer to mines reported higher frequency of ARI complications and workdays 

lost due to Malaria.  However, villagers living closer to mines are more likely to be employed in 

mines, and this in turn positively affects adoption of improved stoves that can potentially reduce 

indoor air pollution. 
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I.  Introduction 

 

Concerns about environmental justice challenge the premise of broad-based development 

promised by extractive mining industries in developing countries. In India, vehement political 

opposition from grassroots socio-environmental activists and public interest groups highlight the 

poor track record of state-supported large-scale extractive projects in conservation of the local 

environment and improving welfare of the affected populations (Sarangi, 2004; Randeira, 2003; 

Guha, 1993). Alienation from the political mainstream (Rew, 2006), state-ownership of mines 

(Sinha et al, 2007) and an inadequate approach to participatory development deprives the local 

population an appropriate share of the rent on the resource (Campbell, 2003). Weak enforcement 

mechanisms of environmental standards fail to keep pollution within limits and subsequent 

adverse effects on the local population (Blacksmith Institute, 2008; Weber-Fahr, 2002). Critique 

of development policy from the perspective of environmental justice focuses on this disparity in 

the distribution of benefits and costs from mining. In this paper, we provide empirical evidence 

relevant to this debate and pertinent to impact assessment of development policy across the 

world. 

The situation also resembles a micro footprint of the ‘Resource Curse’ hypothesis 

proposed by Sachs and Warner (1997, 2001) at the national level – the consistent negative 

correlation between economic performance (per capita GDP growth rate) and natural resource 

abundance (share of exports of natural resource-based products). Bulte et al. (2005) have 

extended the literature on the resource curse by considering a broader set of welfare and 

development criteria; they find that natural resource abundance is negatively associated with 

indicators of nutrition, poverty and life expectancy. By focusing on the human population that is 

both positioned to take advantage of new economic opportunities and most exposed to the 

environmental effects arising from mining, we can assess the specific pathways and micro-

distribution of mining impacts.  This level of analysis contributes to understanding the reasons 

for the resource curse and the possibilities for mitigating that curse through appropriate benefit-

sharing mechanisms (Hancock, 2002).  

The state of Orissa in India faces this challenge as it embarks upon a major reform 

program with the mining sector taking center stage in the growth process. Much of the proposed 

mining expansion is in remote regions with a predominantly tribal population. Previous instances 



of expansion of iron ore mines in the state were marred by expropriation of tribal land and large-

scale displacement of villagers1. In this paper, we empirically examine the consequences of 

mineral extraction on health outcomes of people living close to mines. We (1) contribute to the 

renewed interest in linking public health with use of environmental resources (Lee, 2002), (2) 

provide empirical evidence for the ‘resource curse’ at the micro-level and (3) examine if 

employment in mines influences adoption of prevention measures (like improved cook stoves 

and bed nets). From a survey of the literature on health issues arising from mining activities, 

acute respiratory illness (ARI) (Stephens and Ahern, 2001; Joyce, 1998) and malaria (Webster, 

2001) were found to be most commonly cited besides occupational injuries. However, the 

literature on impact of iron ore mining on community health, especially in the context of 

developing countries is thin. Using cross-sectional data, we develop multivariate econometric 

models to distinguish between environmental and occupational health pathways through which 

mines could have an impact on health outcomes of individuals. We combine information from 

household surveys with spatial information on location of mines and villages to investigate 

associations between health outcomes, employment and proximity to mines. While we observe 

no strong associations for occupational health outcomes using information on employment in 

mines, we find that ARI incidences increase among individuals living closer to mines, but 

malaria incidence in the population increase in villages further away from mines. Analyzing if 

employment in mines eases financial constraints for households to adopt preventive measures 

(e.g. improved stoves and mosquito nets to reduce the incidence of ARI and malaria 

respectively), we find that it positively influences adoption of improved stoves. 

 

II. Local health consequences of mining 

 

Freudenberg and Wilson (2002) in a review of case studies on local socio-economic 

impacts of mining in United States challenge the belief that mining leads to rural development. 

Their results, on the contrary, point to higher observed levels of poverty and unemployment in 

the mining areas. Mining projects around the world have come under severe criticism under 

counts of land expropriation and environmental degradation that harm the livelihoods and health 

                                                       
1 New York Times, January 13 , 2006 
 



of local communities (Keenan et al 2002; Sosa 2000). Mining projects involve huge investments 

accompanied with strong political influence, and local communities could bear substantial 

environmental, economic, and social costs unless local governments enforce strong regulatory 

systems to ensure equitable sharing of benefits (Auty, 2006). An independent assessment of 

World Bank sponsored mining projects in India concluded that ‘people living close to mines 

have suffered most and usually benefitted least’ (Teri, 2001). However, there are few studies 

focusing on the health impacts of mining from a policy perspective (Hilson, 2002). 

A central tenet of research on the environmental impacts of mining has been that because 

mines occupy a relatively small land area (when compared, for example, to other land uses like 

forestry or agriculture), the effects of mining on the environment will be localized (Bridge, 

2004). Though dispersal of toxic wastes and other harmful byproducts of mining by wind and 

water happen over wide geographical areas, the detrimental impacts are most pronounced in 

areas close to mines. There are direct and indirect pathways that mines affect health outcomes of 

people. Employment in mines is an example of a direct pathway for impacts of mines, both in 

terms of the benefits from employment in mines as well as occupational health outcomes. Mines 

could also affect welfare though environmental health pathways that is direct as well as indirect. 

For example, declining ambient air quality due to spread of dust and chemicals from mining 

areas directly affect people living close by,  irrespective of whether they work in mines or not 

(Sinha et al., 2007, Stephens and Ahern, 2001). On the other hand, deforestation due to mining 

activities indirectly affects families dependent on forest products for income generation and 

nutritional requirements by reducing their access to the resource base (Peters et al. 1989). 

Among public health concerns for mine workers, incidence of respiratory disorders has 

received considerable attention in the environmental and occupational health literature (Ross and 

Murray, 2004; ILO, 1997)2. Mining in both surface and underground mines involves drilling and 

shearing of large quantities of minerals. The clouds of dust raised in displacing these materials 

can severely damage the lungs, particularly after years of exposure (Joyce, 1998). Occupational 

exposure to air pollutants has been found to be a major cause for chronic cough and asthma, 

symptoms common in chronic bronchitis (Hedlund et al., 2006). However, there is a negative 

externality to society as individuals not employed but living close to mining areas are also 

                                                       
2 For a review of the occupational and community health impacts of mining internationally, refer to Stephens and 
Ahern, 2001.  



exposed to the harmful effects of air pollution. Prevalence of acute and chronic respiratory health 

has been observed among individuals close to open cast or open pit mines (Pless Mulloli et al., 

2000). In a study on opencast coal mining in the state of Orissa in India, suspended particulate 

matter (SPM) were found to be significantly higher than permissible limits in the mines as well 

as in the surrounding locations from various operations (Chaulya, 2004). In other studies on open 

cast coal mines, poorly maintained dirt roads and movement of heavy vehicles to transport the 

ore resulted in dispersion of coal dust in areas adjoining mines and cause severe air pollution 

(Ghosh and Majee, 2000; Singh and Sharma, 1992).  

Incidence of malaria is also common in areas close to mining activities, though the 

pathways of health impacts are both direct and indirect. Borrow pits left after road constructions, 

drains and abandoned excavation areas in opencast mines often increases breeding sites for the 

malaria vector and directly increases malaria prevalence (Yasuoka and Levins, 2007). 

Deforestation caused by mining activities and subsequent change in land use and human 

settlement alters the local ecosystem, changes the vector ecology of mosquitos and indirectly 

affects malaria incidence (Patz et al., 2004, Takken at al. 2003). Among all states in India, the 

incidence of malaria is the highest in the state of Orissa (Kumar et al., 2007). A cross-sectional 

study conducted in 1989 in settlements in the iron ore mining region in Orissa found high 

densities of the malaria vectors. Children were found to be most vulnerable to malaria attacks 

and the poor casual laborers in the mines were found to be worst affected in economic terms 

(Yadav et al., 1991). 

 

III. Prevention options to mitigate incidence of ARI and malaria  

 

 We focus on adoption of improved cook stoves and bed nets by households that should 

also influence the incidence of ARI and malaria respectively. Our rationale to focus on these 

interventions are three-fold – (1) failure to account for such preventive measures will confound 

the association we aim to establish between mining and incidence of ARI and malaria; (2) a 

positive association between employment in mines and adoption of such preventive measures 

will offset the adverse health impacts of mining on the local population; (3) examine if micro-

credit and social learning provide practical solutions to financial and information constraints that 

negatively influence the adoption of these measures. 



A recent simulation study by Wilkinson et al. (2007) provides evidence of significant 

reduction in mortality due to respiratory complications from adoption of improved cook stoves 

and reduction in indoor air pollution (IAP). The products of incomplete combustion from 

biomass combustion (firewood, crop residue) contain a number of health-damaging pollutants 

(Fullerton et al., 2007; Bruce et al., 2000) responsible for a significant global burden of 

respiratory infections (Smith et al., 2004; WHO)3. 70% of the population living in rural India 

(and majority in our study) traditionally cooks using unvented stoves with women and children 

experiencing the highest exposures to indoor air pollution. As India embarks on a ‘National 

Biomass Cookstoves Initiative’4 with the policy objectives of social and health development at 

the forefront, it is relevant to examine factors that influence the adoption of these stoves. In a 

recent study of indoor air pollution in Bangladesh, construction of the kitchen with proper 

ventilation was found to yield better indoor air quality (Dasgupta et al., 2007). 

As compared to other methods of malaria vector control like indoor residual spraying of 

DDT, use of bed nets is technologically simpler and cost-effective (Misra, 1999; Lengeler, 

1996). In a randomized trial of insecticide-treated bed nets in Sundargarh district of Orissa 

(adjacent to location of the present study), relative risk of malaria and parasite rates declined 

significantly in villages with treated nets (Sharma et al., 2006). Partnerships between donor 

agencies, local NGO and communities have been established to raise the awareness and 

disseminate insecticide-treated bed nets (Barat, 2006). 

 In spite of the claimed benefits of these preventive measures in reducing the incidence of 

ARI and malaria, the rate of adoption has been consistently below expectations of the agencies 

and NGOs promoting them. Much of the inertia in adoption is attributed to financial constraints 

facing rural families (Dasgupta et al., 2007; Wallmo, 1998 for Cookstoves; Meltzer, 2003; 

Nuwaha, 2001 for bednets). These empirical findings suggest that increased cash income – for 

example, from employment in mines – could increase adoption rates of these preventions. Also, 

positive effects of collective learning through information sharing among neighbors has been 

observed in de-worming among children (Miguel and Kremer, 2004) and improved sanitation 

practices among rural families (Dickinson and Pattanayak, 2009).  

 

                                                       
3 http://www.who.int/mediacentre/factsheets/fs292/en/index.html - downloaded April 25, 2008 
4 http://mnes.nic.in/press-releases/press-release-02122009.pdf - downloaded January 7, 2010 



IV. Study area 

 

 The state of Orissa lies along the eastern coast of India with the largest reserve of 

superior quality hematite iron ore in the country (Sengupta, 2005). Situated along the Northern 

border of the state, Keonjhar district was selected for this study because of the concentration of 

iron ore mines in Joda block within the district5. 31% of the total mining employment in the state 

of Orissa is concentrated in the district of Keonjhar indicating the importance of the mining 

industry in the region. Mining for iron ore in the district began in the 1950s, and much of the 

planned expansion and liberalization of the mining sector in Orissa will open up new mining 

areas in this region. The recorded forest area in Orissa in 2003 was 4.84 million hectares, which 

constituted 31.06% of the geographic area and ranked fourth among Indian states in terms of 

total forest cover6. However, in comparison with 1999, forest cover had decreased by almost a 

million hectares7. The district had a relatively high percentage (42.7%) of forest cover in 1999 

(Forest Survey of India, 1999). But, in the two blocks selected for this study, analysis of the 

classified land cover data reveals that 13.4 square kilometers of vegetative cover were replaced 

by expanding mining areas between 1989 and 2004.  

 In the absence of field monitoring and measurement data on ambient air quality, study 

villages were selected based on proximity to mines. The first stage of the sample selection 

process followed a quasi-experimental design, to test the hypothesis that villagers living closer to 

mines were more likely to be impacted by the mines than those further away. On the basis of 

government census data on mine employment and location of mines, two blocks were selected in 

Keonjhar district – Joda and Keonjhar Sadar (Figure 1). Joda block has a large concentration of 

iron ore mines, as confirmed by the fact that 68% of mine workers in Keonjhar district live in 

Joda block. On the contrary, Keonjhar Sadar block has a much lower concentration of mines and 

only 1% of people employed in the mining industry live in this block. In the second sampling 

stage in each of these blocks, 10 villages were selected at random (Figure 2). Finally, in each of 

                                                       
5 Keonjhar district has 20% of all the mining leases granted by the State government of Orissa. The district has more 
than 12076 hectares of iron ore mining areas under 46 mining leases, making it the most important iron ore mining 
center in Eastern India (Source: Status paper on mining leases in India. Vasundhara, India). 
6 ‘State of Forest Report’ published b y the Forest Survey of India in 2003; 
http://www.fsiorg.net/fsi2003/states/index.asp?state_code=21&state_name=Orissa 
7 ‘State of Forest Report’ published by the Forest Survey of India in 1999; 
http://www.envfor.nic.in/fsi/sfr99/sfr.html 



these villages, 30 households were selected from each village to be interviewed. For 

convenience, villagers in the Joda block henceforth will be referred to living in the ‘high 

exposure’ zone while Keonjhar Sadar will be referred to as the ‘low exposure’ zone.  

 

V. Description of the data 

  

 The dataset consists of two elements – (1) a household survey administered to 600 

households with specific modules on questions on incidence of ARI and malaria among family 

members; (2) forest cover maps derived from Landsat satellite imagery for 1989 and 2004, and 

GIS information on locations of mines and villages. For indicators of health outcomes, we use 

reported information on types and days of illness specifically pertaining to incidence and 

workdays lost due to of ARI and malaria8. Information on the number of iron ore mines was 

collected from the database maintained by the directorate of mines. Information from survey 

topo-sheets and remotely sensed data was combined with the mining database to identify the 

location and area of iron ore mines in the study area. These mines are under state as well as 

private ownership, operating under various levels of modernization and mechanization. 

Observations from field visits to a sample of mines in the study area revealed apparent variations 

in abidance to environmental regulations prescribed by the Department of Mines, which has 

repercussions on occupational and environmental health issues. For exposure to mines, GIS 

information on location of mines and villages are used to construct a proxy measure based on 

Euclidean distance to the nearest iron ore mine9. As a result of the study design, villages in the 

high exposure and low exposure zones are within a range of 0.2 to 4 km and 6 to 21 km from 

iron ore mines respectively. Note that all the villages fall within the “Peripheral Development 

Zone” of 50 km10 - a specification followed in mining and development projects supported by 

                                                       
8 Unless mentioned, incidence and workdays lost due to ARI is based on the reported information on whether an 
individual had suffered from ARI in the year prior to the survey in 2005. For malaria, this is based on information 
from 2001 to 2005. 
9 Alternative definitions of exposure based on ‘number of mines in a 2km buffer around each village’ were used in 
the analyses which provided similar results. WE stick to using the Euclidean distance based measure for exposure to 
mines in this paper. Besides the mining areas, there are unregistered, small-scale stone-crushing units in the study 
area and the dust from these units cause significant air pollution. However, these units do not operate in the same 
spot for a long period of time to avoid impoundment, and their effect on ARI specifically is difficult to assess. Based 
on data and field observations, proximity of villages to these stone-crusher units is highly correlated to distance to 
iron ore mines. 
10 World Bank report on the study ‘Towards Sustainable Mineral Intensive Growth in Orissa, India’ is available at:  



the World Bank to address issues related to local impacts of mines. The descriptive statistics of 

the variables used in the analysis is reported in Table 1. 

 A total of 600 households (300 in each block) were interviewed and information was 

collected for 2949 individuals. Out of 600 households, 175 out of 300 households interviewed in 

the high exposure zone reported at least one family member to be working in the mines, while 

the corresponding number in the low exposure villages was 45 out of 300 households11. 283 

individuals from 216 families reported to be working in mines12. Table 2 shows the distribution 

of health outcome variables in the full household sample and the two blocks separately. The 

average number of reported cases of ARI in the family was significantly higher in the high 

exposure zones as compared to the low exposure zones (1.2 compared to 0.8). However, the 

average number of reported cases of malaria in the family was higher in the low exposure zone 

(1.8 compared to 1.5). While the average number of workdays lost per family due to ARI was 

not significantly different across exposure zones, families in the high exposure zones reported 

more number of workdays lost due to malaria (19.5 compared to 12.5). A reason for this trend 

could be the fact that incidences of malaria are lower in the high exposure zone, but the severity 

of malaria is worse in the high exposure zone. Correlations with distance to iron ore mines show 

that workdays lost increases among villages with greater proximity to mines. Note that the mean 

and variance of count of ARI and malaria variables are similar and thus we model these two 

variables as a Poisson process in our econometric estimation.  

 Table 3 presents the results on health status breaking down the population into 3 sub-

groups – (i) individuals with no family members working in mines, (ii) individuals with some 

family member working in mines, (iii) individuals working in mines themselves. Parsing the 

sample into these subgroups helps to better distinguish the occupational health impact on 

individuals from mine employment. While individuals in group (i) should have no occupational 

health effect, those in group (ii) only have an indirect effect as members working in mines could 

                                                                                                                                                                               
http://www_wds.worldbank.org/external/default/WDSContentServer/WDSP/IB/2007/12/21/000020953_200712211
03718/Rendered/PDF/398780IN.pdf 
11 The household questionnaire had modules to record the occupation details of every household member. 
Employment of a family members in mines was determined for the cases where a member was reported to be 
working as a ‘non-farm worker as factory worker’. Employment in the stone quarries was determined based on 
member occupation being ‘non-farm work as construction labor’. 
12 Another 103 individuals from 65 families reported to be working in stone quarries. As mentioned before, these 
stone quarries operate illegally and employment in these units is temporary in nature. WE ignore quarry employment 
in the subsequent analyses. 



transmit ARI or malaria contracted while working in mines among other family members. Group 

(iii) represents the sub-sample most likely to suffer a direct occupational health effect from 

working in mines. There is no significant difference in ARI related health indicators across these 

three groups, except for expenditure where individuals not working in mines report having spent 

more. For malaria, those who work in mines suffer more in terms of workdays lost as well as 

significantly spend more on treatment.  

 

VI. Conceptual framework 

  

Figure 3 presents a conceptual framework to analyze the possible impact of mining on 

public health. Mining operations can generate both direct and indirect health impacts for the 

proximate population, and these pathways are categorized as environmental and occupational. 

There are direct financial benefits from employment in a mine if the opportunity cost of working 

in the mines is lower than the mining wage. The increase in income can reduce the cash 

constraints of families to invest more in illness prevention measures that improve overall health 

status. Proximity to mines has direct and indirect negative health effects as well. Mines that fail 

to meet prescribed environmental standards are more likely to generate direct negative 

externalities for those who are employed in mines (occupational health), as well as through 

negative externalities for those who do not work in mines but live close to it (environmental 

health). In the context of the paper, the dust and other harmful suspended particulate matter 

could increase ARI-related health problems, or abandoned areas with stagnant water become 

breeding grounds for mosquitos that cause malaria. Large areas had to be deforested to establish 

the open cast mines in the region. This imposed a financial and nutritional burden on the 

villagers in the study area who relied on sale and consumption of forest resources for their 

livelihood.  

This framework provides a more nuanced description of the complex set of relationships 

that connect mining with public health concerns. It helps separate causal pathways, provides a set 

of testable hypotheses and the empirical analyses required to verify those (Ethridge, 2004). The 

specific hypotheses that we focus on in the econometric section are: (a) proximity to mines 

increase incidence of ARI and Malaria; (b) income from mines reduces financial constraints for 

farmers and enables them to invest in preventive activities that reduces the burden of illness. 



 

VII. Econometric models for health outcomes 

 

 In the first step of the econometric model, the individual-level dataset is used to model 

two separate outcomes related to ARI and malaria – (i) whether an individual member reported 

the incidence of ARI and malaria; (ii) the reported number of workdays lost by individual 

members due to ARI and malaria. The empirical model for both cases is outlined as follows. 

 Let ( )y  be the outcome of interest – either incidence or workdays lost due to ARI and 

malaria. These health outcomes are a function of a vector of individual-specific 

characteristics ( )I , household-specific characteristics ( )H , location of the household ( )L , 

environmental health variables ( )EH , occupational health variables ( )OH  and preventive 

behavior ( )P .  

 

( )POHEHLHIFy ,,,,,=         (1) 

where ( ).F  depends on whether incidence of ARI/Malaria (a binary variable) or workdays lost 

due to ARI/Malaria (count variable) is being modeled.    

The variables used in each group are: 

Individual-specific ( )I : Age, sex, education, number of hours devoted to wage employment on an 

average day by individual member. 

Household-specific ( )H : Caste, amount of fuelwood used for domestic consumption, amount of 

irrigated land in village. 

Location of household ( )L : distance to paved roads, distance to primary health center. 

Environmental health ( )EH : distance to nearest iron ore mine using GIS information. 

Occupational health ( )OH : dummy if individual is employed in mines, number of days reported 

to be working in mines. 

Preventive behavior ( )P : Use of improves stoves for cooking, dummy if kitchen is partitioned 

from the house or not, dummy if bed nets are used for sleeping. 

 

(a) Probit model for incidence of ARI and malaria: 



 A binary variable was constructed based on the information of which individual family 

member had occurrence of ARI and malaria. A Probit of the following form is estimated: 

( ) ( )XGXy ββ +== 01Pr , where a vector of explanatory variables ( )X  is specified in (1), and 

( ).G  is the standard normal cumulative density function. Individuals within the family have the 

choice of working in mines, which makes mine employment endogenous to the model. WE use 

proximity to mines, average number of hours worked in wage employment, dummy if land 

owned and years of education as instruments for mine employment and estimate the Probit as a 

2SLS model. 

 Results from the Probit model are shown in Table 4. The environmental health variable, 

measured by Euclidean distance to the closest iron ore mine is significant across the two models, 

but with opposite signs. While as distance to mines increase by 1 km, the probability of a family 

member being affected by ARI problems decrease by 2.3%, while the probability of malaria 

increase by 1.9%. This result mirrors the previous observation that villagers closer to mines in 

the high exposure zone reported a higher incidence of ARI, while those further from mines in the 

low exposure zone reported a higher occurrence of malaria. Employment in mines, after being 

instrumented, is negatively affected with the incidence of ARI – an additional day of 

employment in mines reduces the probability of ARI by 0.1%. Employment in mines increases 

the probability of malaria, though the result is not significant. None of the demographic 

variables, except whether the family belongs to a scheduled tribe, is significant. Generally, 

people belonging to the scheduled tribes are historically marginalized, and 70% of the mine 

workers in our sample belong to scheduled tribes. This result raises the doubt of under-reporting 

of health status information by this group. Location-specific variables like distance to paved 

roads and primary health center had little explanatory power. We use the log of amount of 

fuelwood consumed by the household to control for the fact that combustion of firewood for 

domestic cooking and heating could also lead to higher incidence of ARI. If this factor is 

ignored, then the impact of mines on ARI incidence could be over-estimated. Increase in 

firewood use has the expected effect of increasing ARI, but the effect is not significant. In the 

case of malaria, We control for the amount of irrigated land and change in forest cover around 

the village – factors that could affect the incidence of malaria. The significantly negative effect 

of irrigated land on incidence of malaria is surprising, as Patz (2004) argues that irrigated 

agricultural fields often provide breeding grounds for mosquitos. Given the clustered nature of 



these villages, agricultural land is arranged in concentric circles around the villages. Irrigation in 

agricultural fields often results in stagnant pools of water in the land surrounding the villages and 

was suspected to provide breeding areas for mosquitos. However, given the highly seasonal 

nature of rain-fed irrigation and the economic importance of agricultural land for households, the 

irrigation variable might be working as a proxy for welfare in the low exposure villages. Villages 

with a greater decrease in forest cover in a 2km buffer around the village reported higher 

incidence of malaria, but the effect was not significant. The prevention variables all have 

expected signs and are highly significant – incidence of ARI reduces by 75% and 23% among 

individuals who have improved stoves and partitioned kitchens in their house respectively. 

Incidence of malaria reduces among individuals by almost 12% if they use insecticide-treated 

bed nets in the house. 

 

(b) 3SLS models for workdays lost due to ARI and malaria: 

 In the sample, workdays lost due to ARI and malaria has a range of 0 to 90 days each. In 

this model, workday lost is treated as a continuous variable and a 3SLS model is developed. 

Employment in mine is assumed to be endogenous and is estimated simultaneously with 

workdays lost due to ARI and malaria. The error term in both equations is assumed to be 

correlated due to unobserved heterogeneity and 3SLS estimation method is employed.  

 Table 5 shows the results from these two models. The environmental health variable 

remains significant and negative for both the ARI and malaria models. Recall that Table 2 

indicated that though the incidence of malaria was high in the low exposure zones, the number of 

workdays lost due to malaria was higher in the high exposure zone leading to the conjecture that 

the severity of malaria is worse in villages closer to the mines. These general observations 

substantiate the negative coefficient with distance to iron ore mines. Living 1km closer to the 

iron ore mines increases the workdays lost due to ARI and malaria by 0.02 and 0.08 days. The 

instrumented occupation health variable is not significant across either of the models. Older 

individuals suffer more days of lost work due to ARI. Individuals belonging to the scheduled 

tribes and scheduled castes report less workdays lost due to both ARI and malaria. Compared to 

models in table 3, increase in forest cover in a 2km buffer around villages (comparing 1989 and 

2004 classified land cover data) is found to increase the workdays lost due to malaria. Loss in 

forest cover in a 2km buffer around sample villages was higher in the low exposure zones than in 



the high exposure zones (2.3 sq. km compared to 0.31 sq km), and the spatial distribution of 

greater malaria incidence in the low exposure zones supports the deforestation-malaria 

hypothesis. However, malaria incidence or workdays lost cannot be attributed to deforestation 

due to mining activities. Location-specific variables still remain largely insignificant, except that 

workdays lost due to ARI are higher for individuals living further away from the primary health 

center. The prevention variables continue to have the expected signs, but only kitchen 

construction and use of bed nets are significant. 

  

(c) Count data models for workdays lost due to ARI and Malaria: 

 While the range for reported workdays lost by individuals due to ARI and Malaria ranged 

between 0 and 90 days, more than 99% of the sample lost between 0 and 20 days for each 

illness13. Unlike treating workdays lost as a continuous variable as in the 3SLS models estimated 

in (ii), an event count model is estimated. As noted in Table 2, the difference between mean and 

variance of workdays lost due to ARI and malaria with the variance being higher indicated 

overdispersion in the data (Long and Freese, 2006). There are also a large proportion of 

individuals who did not report workdays lost due to illness. We assume two different processes 

generating the data – one explaining the zeros, and the other for the positive number of workdays 

lost (Lambert, 1992). We thus use Zero-Inflated Negative Binomial (ZINB) models to account 

for overdispersion and excess zero that we observe in the data (Cameron and Trivedi, 1998). A 

battery of visual and model fit statistics are compared to determine that the ZINB model was 

most appropriate compared to ordinary Poisson or Negative Binomial models. 

The results from the ZINB model are presented in Table 6. Comparing results with the 

3SLS results in Table 5, the occupational health variable (days worked in mines) is insignificant 

and becomes negative in the zero-inflated models. The environmental health variable (distance to 

nearest iron ore mine) is consistently negative but insignificant14. The prevention variables all 

have expected signs, but only use of improved stoves remains significant in explaining reduction 

in workdays lost due to ARI. Amount of firewood consumed is surprisingly significantly 

negative across all models, another result that deviates from the 3SLS model. Male family 
                                                       
13 For ARI (malaria), out of 631 (1009) individuals reporting workdays lost to illness, only 14 (5) reported to have 
lost more than 20 days due to ARI. These models are thus run with the restricted sample where reported workdays 
lost due to ARI and malaria was less than or equal to 20 days. 
14 When the logarithm of distance to nearest to iron ore mines is used instead, the coefficient is just significant at the 
15% level. 



members reported to have lost more workdays lost due to ARI, which is likely as most of the 

wage labor are done by male members and are more likely to report loss of working days 

compared to female members mostly engaged in household chores. An individual living 1 km 

closer to an iron ore mine will increase the number of workdays lost to ARI by 0.3%. Being a 

male reduces workdays lost by 13%, raising the concern that women members in the household 

are more susceptible to ARI related problems, though the use of firewood for cooking is a critical 

factor for that. There is no perceptible difference in workdays lost for individuals with mine 

employment. Families with improved stoves and partitioned kitchen reduce workdays lost to 

ARI by 11% and 2% respectively. In the model for malaria in Table 6, the occupational health 

variable remains positive but insignificant across all models. The environmental health variable 

is significant and negative, indicating that while incidence of malaria is lower in villages closer 

to mines, those living closer report to have suffered more from workdays lost due to malaria. The 

use of mosquito nets reduce workdays lost due to malaria but the result is insignificant. 

Workdays lost increases with more land in irrigation and greater loss of forest cover around the 

village, as was surmised from the literature review. An individual living 1 km closer to an iron 

ore mine will increase the number of workdays lost to malaria by 7%. A 1% increase in area 

under irrigation around the village increases workdays lost to malaria by 3%, while 1 sq. km. of 

deforestation around the village increases workdays lost by 1.5%. A family with an additional 

mosquito net reduces workdays lost to malaria for individual members by 11%.   

  

 As a summary of the results from these sets of model, there is little evidence of 

occupational health for either ARI or malaria. The environmental health effect, using the proxy 

of proximity to mines, is more pronounced, as evident for ARI in the 3SLS model and on malaria 

in the ZINB model. The hypothesis that higher deforestation leads to higher prevalence of 

malaria was only supported in the ZINB model, though this deforestation could not be attributed 

to mining activities alone as more deforestation took place in the low exposure zone. Another 

robust result from the models reflects the importance of prevention activities on individual health 

outcomes. Preventive measures like adoption of improved stoves and construction of partitioned 

kitchen inside homes reduced the incidence and workdays lost due to ARI. Use of insecticide-

treated bed nets also reduced the incidence and workdays lost due to malaria. From a public 



health policy perspective, it is important to identify factors that influence the adoption of these 

prevention measures. 

 

VII. Factors affecting use of prevention measures 

 

 Families make decisions regarding the adoption of the three preventive measures based 

on their subjective utility post-adoption. It is important to point out that these prevention 

measures help reduce the burden of ARI and malaria related health problems among family 

members, irrespective of whether these problems were induced by mining activities or not. The 

typical approach to model adoption behavior of individuals is to discrete choice model. Among 

the factors that could affect adoption, most interest lies in the fact that whether cash income from 

employment in mines eases the cash constraint facing poor, rural households thus facilitating 

investment in preventive measures. There are also opportunities for individuals to observe the 

changes in outcomes among neighbors in the village who use these prevention methods.  

This kind of exchange of information among residents in the village often influences 

adoption decisions of individuals (Dickinson and Pattanayak, 2009). In the model, evidence for 

such kind of social interaction effect in adoption of these preventive measures is also tested in 

the model. The household’s latent utility from adoption of preventive measures can be modeled 

as set of household specific and location-specific characteristics, such that 

( ) iii eBXbB += −1
* ,  

where, iB  is the individual adoption decision, iB−  denotes the adoption decision of other 

members in the village and iX  is a set of household and location-specific characteristics.  

This model is estimated using a probit regression such that the likelihood function is of the form: 

( ) ( )iiii BXFBXB −− −−−== θβ1,1Pr , where, ( ).F  is the standard normal cumulative density 

function. 

 

 The results of the estimation are presented in Table 7. Three sets of models are presented 

relevant to each of the preventive behaviors. Given the economic importance of agriculture in the 

region, dummy for land ownership represents wealth status of a household. Based on the dummy 

for land ownership, households owning land had a 14% (24%) higher probability of using bed 



nets (improved stoves). As was the case with employment in mines in previous models, days 

worked by an individual in mines is treated as endogenous and instrumented using average time 

devoted by family members to wage employment and Distance to iron ore mines. The 

probability of adoption of improved stoves is found to significantly increase with employment in 

mines. As mentioned before, dissemination of improved stoves in rural areas in Orissa are being 

promoted through micro-credit organizations (Duflo, 2007). These organizations are yet to be 

operational on a large scale in the region and the lack of significance of participation in micro-

credit organizations in the promotion of improved stoves or bed nets indicates this. As a matter 

of fact, 72 of the households that reported having improved stoves in the region were not 

members of any micro-credit groups in their village. Among the factors used to examine the 

impact of social influence on household adoption decision, two variables were considered – 

count of adoption by other members in the village and number of social organizations that 

members of the individual households participate in. Only in case of adoption of bed nets was 

the village count of adoption significant, indicating that individual adoption of bed net increases 

by 3.6% when one more family in the village adopts. Participation in village level organizations 

increases the scope of interaction and sharing experiences with other villagers. Such social 

organizations and NGOs have been found to be important nodes of information regarding 

adoption of new technology (Bandiera and Rasul, 2006). This variable was significant only in the 

case of adoption of bed nets.  

 The cross-sectional analysis precludes inferences of any causal nature such as mine 

employment causes greater use of preventive measures. However, the results point to the 

possible effect where increase in cash income from mine employment allows cash-constrained 

rural families to better invest in prevention of ARI and malaria. 

 

VIII. Conclusion 

 

 This study is one of the first attempts towards comprehensive analyses of health impacts 

of mining on the local population, an important stakeholder in the public policy debate 

surrounding the proposed expansion and privatization of the mining industry in Orissa. We find 

consistent environmental health impacts as villagers living in close proximity to mines have 

higher incidences of ARI and lose more workdays due to malaria. Though the absence of 



baseline data does not allow any causal inferences, the association between proximity to mining 

areas and health outcomes are robust across different models that we estimate. There is evidence 

that employment in mines positively influencing adoption of improved stoves that can reduce the 

burden of ARI, but similar effects are not observed for adoption of bednets. Instead, there is 

evidence of a demonstration effect in adoption of bednets as families use more nets if the rest of 

their village also does the same. 

 These results resonate with the concerns raised from the environmental justice 

perspective. Poor people living closer to mining areas bear a health burden, and qualitative 

evidence from stakeholder interviews with government officials and local non-governmental 

organizations revealed no compensation arrangements to offset such negative externalities. 

These results are important from the point of distributional equity that demands a rethink about 

compensation implicit in the ‘participatory development’ framework. 

 The analyses would have been more rigorous if clinical data was available instead of self-

reported health outcomes. Actual data from air quality monitors across the study area for the 

exposure measure would have been preferred using Euclidean distances of villages from mines 

as exposure. These are issues that future research on this issue needs to develop on. 
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Appendix 
 

 
Figure 1. Two blocks chosen for the study – Joda and Keonjhar Sadar.  
According to the national census in 1991, 68% of reported mine workers in the  
district were in Joda block while Keonjhar Sadar reported only 1% of mine workers. 

 



 
Figure 2. Classified land cover images showing the two blocks Joda and Keonjhar Sadar. 
The GIS data on the location of the mines and villages were used to calculate two measures  
of exposure to iron ore mines – Euclidean distance to iron ore mines and number of mines  
in a 2km buffer around each village  

 
 
 
 
 
 
 
 



 
Table 1. Descriptive statistics of household and individual level variable used in the analyses 

 

Variable Obs Mean Std. Dev. Min Max 
      

Scheduled Caste 600 0.07 0.25 0 1 

Scheduled Tribe 600 0.68 0.47 0 1 

Log net firewood consumed (kg) 600 3.85 1.37 0 6.58 

Participation in number of social organizations 600 1.79 1.28 0 6 

Number rooms in house 600 2.70 1.48 1 11 

Average amount of irrigated land around village 600 2.78 3.72 0 12 

Change in forest cover within 2km village buffer (2004-1989) 600 1.24 8.43 -19.62 24.86 

Log distance to paved road (km) 600 2.87 1.05 0.69 5.20 

Log distance to health center (km) 600 3.41 1.06 0.69 5.08 

Log distance to market center (km) 600 3.81 0.78 0.0 5.19 

Distance to iron ore mine (km) 600 7.33 6.11 0.21 20.92 

Cash income from mines (Rs) 600 6979.5 12383.9 0 108000 

Use of improved stoves 600 0.01 0.10 0 1 

Use of partitioned kitchen 600 0.53 0.50 0 1 

Use of bed nets 600 0.53 0.50 0 1 

Participate in micro-credit organizations 600 0.12 0.33 0 1 

Number of males 2494 0.51 0.50 0 1 

Age of individuals 2494 26.92 17.98 0.23 105 

Education of individuals 2494 2.97 4.04 0 18 

Average hours working in mines 2494 1.66 2,67 0 12 



Table 2. Descriptive statistics of health outcome indicators for the full sample, and the two blocks separately 
 

Full sample Joda            
(High exposure) 

Keonjhar        
(Low exposure) 

Variable 

Mean  SD Min Max Mean SD Mean SD 

Population 
weighted 

mean 

Correlation 
with 

distance to 
iron ore 

mine 

Count of ARI 
incidence* 1.0 1.2 0 6 1.2 1.3 0.8 1.2 1.0 -0.16 † 

Count of Malaria 
incidence* 1.6 1.4 0 10 1.5 1.2 1.8 1.6 1.6 0.12 † 

Expenditure on ARI 
(Rs) 143.8 450.3 0 8750 158.5 287.0 129.0 568.8 146.1 -0.02 

Expenditure on 
Malaria* (Rs) 544.4 1110.1 0 17350 678.5 1349.0 410.2 782.9 557.2 -0.09  † 

Workdays lost due to 
ARI 4.8 9.8 0 90 5.5 9.0 4.0 10.6 5.1 -0.09 † 

Workdays lost due to 
Malaria* 16.0 17.4 0 160 19.5 19.6 12.5 13.9 17.0 -0.16 † 

* t-test indicating means of Joda and Keonjhar blocks are significantly different at 5% level 

†  significance at 5% level 

 
 



Table 3. Description of health indicators by sub-groups based on mine employment 
 

Variable No member in family 
works in mine 

Other member in family 
working in mine 

Only individuals in 
family working in mine 

 mean st error mean st error mean st error 

Reported ARI 0.21 0.01 0.23 0.01 0.22 0.02 

Workdays lost to ARI 1.04 0.09 1.07 0.16 0.92 0.16 

Expenditure on ARI (Rs.) 33.64 5.07 28.74 3.60 28.62 5.85 

Reported Malaria 0.36 0.01 0.32 0.02 0.32 0.03 

Workdays lost to Malaria 1.34 0.07 1.97 0.19 1.96 0.24 

Expenditure on Malaria (Rs.) 105.18 9.31 110.49 10.49 151.79 39.08 

observations 1867 799 283 

 



 
Figure 3. Conceptual framework to analyze the impact of mines on health for the population living in close proximity 

 
The arrows indicate a causal link between different elements in the framework. A (-) sign indicates a negative relationship in the causal chain – for 
example, mining often involves clearing forests for excavation and thus proximity to mines reduces the availability of forest resources. On the 
other hand, an example of hypothesized positive relation between higher disposable income and higher adoption of prevention measures is 
indicated by a  (+) sign. 



Table 4. Probit model for incidence of ARI and malaria among individual family members (ivprobit in Stata) 
 

  probit for ARI probit for malaria 
  dy/dx st. error a p-val dy/dx st. error a p-val 
Dummy for male 0.034 0.057 0.533 0.054 0.054 0.320 
Age 0.000 0.002 0.841 0.002 0.002 0.231 
Scheduled Caste -0.116 0.179 0.516 -0.051 0.121 0.671 
Scheduled Tribe -0.219 0.116 0.06 -0.178 0.093 0.056 
Log of firewood consumed 0.009 0.033 0.783      
Average irrigated land around village      -0.034 0.008 0.000 
Change in forest cover in a 2k buffer      0.004 0.005 0.353 
Log of distance to road -0.057 0.054 0.296 -0.028 0.052 0.592 
Log of distance to health center 0.033 0.046 0.474 0.017 0.037 0.643 
Days worked in mine # -0.001 0.001 0.045 0.001 0.001 0.343 
Distance to iron ore mine -0.023 0.008 0.006 0.019 0.007 0.003 
Dummy for improved stove -0.757 0.475 0.101      
Dummy for partition in kitchen -0.230 0.096 0.017      
Dummy for use of mosquito nets      -0.118 0.067 0.076 
            
Number of observations 2949 2949 
AIC 35241.6 35864.4 
Log pseudo likelihood -17593.8 -17904.2 

     
# Days worked in mines instrumented in a 2SLS model. Instruments used are distance to iron ore mine, average number of hours 
worked in wage employment, dummy if land owned and years of education. 
a. Clustered robust standard errors by village 



Table 5. 3SLS model for workdays lost due to ARI and malaria (reg3 in Stata) 
 
 Workdays lost to ARI Workdays lost to malaria 
 coeff st err a p-val coeff st err a p-val 
Dummy for male -0.042 0.163 0.790 0.063 0.156 0.681 
Age 0.007 0.004 0.110 0.005 0.004 0.238 
Scheduled Caste -0.662 0.320 0.039 -0.310 0.308 0.305 
Scheduled Tribe -0.794 0.174 0.000 -0.490 0.173 0.005 
Log of firewood consumed -0.030 0.055 0.587    
Average irrigated land around village    -0.036 0.020 0.076 
Change in forest cover in a 2k buffer    0.024 0.009 0.009 
Log of distance to road -0.065 0.073 0.368 -0.018 0.072 0.802 
Log of distance to health center 0.120 0.076 0.117 0.077 0.076 0.318 
Days worked in mine -0.001 0.002 0.549 0.001 0.002 0.536 
Distance to iron ore mine -0.026 0.014 0.066 -0.085 0.014 0.000 
Dummy for improved stove -0.909 0.734 0.216    
Dummy for partition in kitchen -0.289 0.150 0.054    
Dummy for use of mosquito nets    -0.254 0.151 0.090 
constant 1.424 0.434 0.007 2.342 0.471 0.000 
Chi-squared 35.34   0.03 79.83  
Prob > Chi-Sq 0.000    0.000  
 
Days worked in mine       
Distance to iron ore mine -1.441 0.188 0.000    
Daily hours in wage employment 14.052 0.396 0.000    
Dummy if land owned -7.007 2.332 0.003    
Years of education 0.712 0.267 0.008    
Constant 11.100 2.091 0.000    
Chi-squared 1419.64      
Prob > Chi-Sq 0.000      
Number of observation 2949      

a Clustered robust standard errors by village. 
# Days worked in mines instrumented in a 3SLS model. Instruments used are distance to nearest iron ore 
mine, average number of hours worked in wage employment, dummy if land owned and years of 
education. 
Adding more variables like Scheduled caste, Scheduled tribe, age and sex to the first stage 
equation of days worked in mines did not change the signs and significance of coefficients in 
the equation of workdays lost.  
Estimating the same models with the restricted samples where workdays lost due to ARI and 
malaria was <15 did not produce any significant changes to the results. 



Table 6. Zero-inflated Negative Binomial model for workdays lost to ARI and Malaria 
 

 Workdays lost to ARI Workdays lost to Malaria 
 coeff st error b p-val coeff st error b p-val 

Dummy for male -0.140 0.060 0.02 0.045 0.077 0.56 
Age 0.001 0.003 0.76 0.001 0.002 0.73 
Scheduled Caste -0.234 0.126 0.06 0.028 0.123 0.82 
Scheduled Tribe -0.090 0.086 0.29 -0.124 0.147 0.40 
Log of firewood consumed -0.055 0.031 0.07    
Average % irrigated land in 2kbuffer    0.031 0.022 0.15 
Decrease in forest cover    0.015 0.004 0.00 
Log of distance to road 0.034 0.026 0.19 0.018 0.050 0.72 
Log of distance to health center 0.102 0.049 0.04 0.045 0.053 0.39 
Days worked in mine -0.004 0.007 0.50 0.000 0.001 0.84 
Distance to iron ore mine -0.003 0.001 0.42 a -0.074 0.013 0.00 
Dummy for improved stove -0.116 0.074 0.12    
Dummy for partitioned kitchen -0.019 0.086 0.83    
Dummy for use of mosquito nets    -0.111 0.125 0.37 
constant 1.846 0.241 0.00 1.815 0.389 0.00 
       
Inflation equation:       
Household below poverty line 0.462 0.107 0.00 0.160 0.119 0.18 
Log of distance to health center -0.064 0.087 0.46 0.097 0.050 0.05 
Dummy for male 0.005 0.088 0.96 0.147 0.074 0.05 
Age 0.007 0.005 0.12 -0.002 0.003 0.52 
Education 0.035 0.016 0.03 -0.028 0.020 0.15 
Scheduled Caste 0.161 0.347 0.64 0.506 0.244 0.04 
Scheduled Tribe 0.482 0.195 0.01 0.218 0.209 0.30 
Family size 0.195 0.039 0.00 0.073 0.037 0.05 
constant 0.266 0.433 0.54 -0.318 0.324 0.33 
 
a. Barely significant at the 15% level when the logarithm of distance to nearest iron ore mines is used. 
b. Clustered robust standard errors by village. 
 
 
 

 
 
 



Table 7. Probit models of adoption of preventive measures (ivprobit in Stata) 
 

 Use of bed nets Use of improved stoves b Better kitchen construction 
 dy/dx st erra p-val dy/dx st erra p-val dy/dx st erra p-val 
Dummy for land ownership 0.143 0.079 0.06 0.238 0.001 0.02 -0.002 0.051 0.95 
Dummy for participation in micro-credit group c -0.123 0.074 0.09    0.013 0.093 0.88 
Adoption by other members in same village 0.02 0.005 0.00 -0.113 0.304 0.44 0.007 0.006 0.24 
Participate in social organizations 0.089 0.035 0.01 -0.082 0.081 0.15 0.002 0.041 0.96 
Log of distance to markets -0.001 0.031 0.97 -0.278 0.154 0.59 -0.008 0.027 0.75 
Number of rooms in the house 0.135 0.028 0.00 0.097 0.217 0.19 -0.171 0.019 0.00 
Days worked in mines b 0.004 0.008 0.64 0.002 0.041 0.02 0.003 0.007 0.60 
          
Number of observations 2949   528   2949   
Wald Chi-Sq. 106.56   25.83   103.63   
Log pseudolikelihood -1629.31   -5697.66   -1752.84   
Wald test for exogeneity: Prob > Chi_sq 0.89   0.01   0.84   

 
a. Clustered robust standard error by villages 
b. Days worked in mines is treated as endogenous and instruments used are – distance to iron ore mine and average amount spent by 

household members in wage employment. 
c. None of the families that adopted improved stoves participated in micro-credit organizations. The variable drops out of the equation.  


