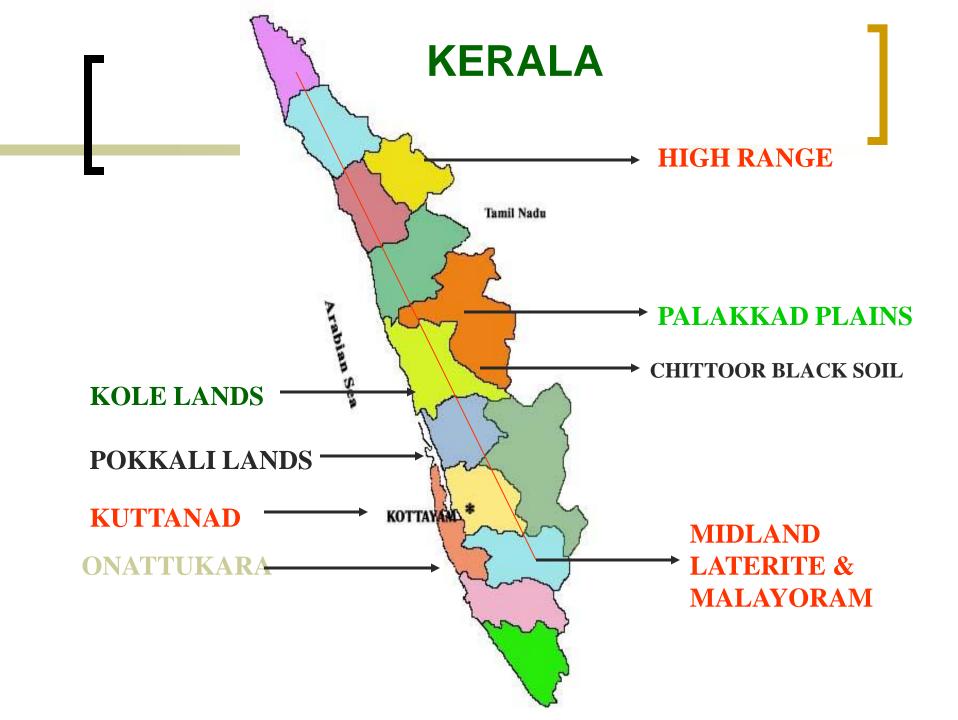
RICE BASED FARMING SYSTEMS IN KERALA

N.K.Sasidharan and K.G.Padmakumar Kerala Agricultural University Regional Agricultural Research Station Kumarakom

Decline in Area and Production of Rice in Kerala

Year	Area (lakh ha)	Production (lakh tons)	Productivity (kg/ha)
1971-72	8.75	13.76	1544
1981-82	8.07	13.06	1660
1991-92	5.41	10.60	1959
2001-02	3.22	7.04	2182
2006-07	2.64	6.42	2435
2007-08	2.29	5.28	2308
2008-09	2.34	5.90	2520
209-10	2.34	5.98	2557
2010-11	2.13	5.28	2452


RICE IN KERALA

- Small farm size less than 0.1 ha
- Mostly single season
- Income inadequate for livelihood
- Only seasonal engagement
- Part time and absentee farmers
- Fallow period 8 months

- Enhance productivity by 50%
- Increase income 3-4 fold
- Increase cropping intensity to 200%
- Render rice farming more organic and environment friendly
- Ensure year round engagement of land

FARMING SYSTEM APPROACH

- Round the year utilization of rice fields
- Integrating compatible components
- Other crops
- Livestock
- Fishery
- Duck/Poultry

Rice production systems of Kerala

Rice ecosystems	Area in ha (91-92)	Percentage to total
Kuttanad	38119	6.70
Onattukara	31031	5.45
Pokkali	4994	0.88
Laterite Midland	266838	46.89
Malayoram	103226	18.14
Palakkad plains	60342	10.60
Black soil (Chittoor)	37061	6.51
High ranges	27500	4.83

HIGH RANGE RICE SYSTEM

- Extent : 27000 ha
- Location: 800 1500 m above MSL
- Seasons:

Nancha (main) (May/June – Oct./Nov.)

Puncha (Dec./Jan. – April/May)

HIGH RANGE RICE SYSTEM

- Situated at Elevations more than 800 m in the Wynadu plateau and Vattavada
- Extent 27500 ha
- Season extents the SW and NE monsoons (July December)
- Varieties: Scented Jeerakasala and Gandhaka sala, and Uma, Athira.

High range - Rice based systems

LATERITE MIDLAND AND MALAYORAM

- Extent
- Seasons
- Varieties

- : 3.7 lakh ha (1992)
- : Virippu, Mundakan Puncha
- : Short, medium and Photosensitive

Mid land and Malayoram – Rice seasons

- Cropping pattern
- First crop (Virippu)
- Second crop(Mundakan)
- Yield range

- : Rice Rice
- : April/May Sept./Oct.
- : Aug./Sep. Dec./Jan
 - : 2860 8200 kg/ha
- Iron and aluminium toxicity limits crop production

IRRIGATED RICE ECOSYSTEM

- Palakkad plains
- Periyar valley commands
- Chittoor black soils
- Irrigation ensured during the fag end
 - of Mundakan and whole of Puncha

IRRIGATED RICE SYSTEM

- Palakkad plains and chittur black soils
- Irrigated by water from Bharathapuzha
- Extent : 97500 ha
- Season : Virippu, Mundakan
- Varieties : HYV
- Known as second rice bowl of Kerala.

Irrigated rice ecosystem – Palakkad plains

- Malampuzha the largest irrigation scheme
- One fifth of irrigation potential of Kerala
- Valayar, Mangalam, Pothundi, Gayathry and
- Chittoorpuzha are others
- Extent : 60000 ha

IRRIGATED RICE ECOSYSTEM PALAKKAD PLAINS

- Double crop wetlands
- First crop (Virippu) : June/July Sep./Oct.
- Second crop (Mundakan) : Oct./Nov. Jan./Feb.
- HYV coverage more than 60%
- Short & Medium duration varieties for I crop
- Medium & Long duration varieties for II crop

IRRIGATED RICE ECOSYSTEM – CHITTOOR BLACK SOILS

- Extent
- Soils
- Soil reaction
- Texture
- Fertility

- : 37000 ha
- : Extension of black cotton soils
- : Neutral to alkaline (7 8.3)
- : Sandy loam Sandy clay loam
- : Medium High in available N&P, low in K

Yield

: 4500 – 9000 kg/ha

ONATTUKARA RICE ECOSYSTEM

- Extent : 28000 ha
- Crop sequence : Rice-Rice-Sesamum
- Soil texture

- : Sandy
- Soil reaction : Acidic
- Fertility status : Low in N, medium

in available P & low in

ONATTUKARA RICE ECOSYSTEM

- Virippu Season
- Variety

- Seeding
- Weeding
- Yield

- : April /May September
- : Short duration Onam, Bhagya, Mattathriveni, Jyothi
 - : By dibbling
- : Hoeing
- : 1000-1200 kg/ha

Onattukara - First crop at the time of harvest

ONATTUKARA RICE ECOSYSTEM – II CROP

Season

- : Aug./Sept. Dec./Jan.
- Seedling establishment. : Transplanting
- Variety
- Fertilizer dose

essential

- Weeding
- Yield

- : Ptb –20, Ptb-4, UR-19, Sagara
- : 40:20:20

Application of P and K essential Organic manure addition

- : Hand weeding
- : 1500- 2000 kg/ha

Onattukara

Second crop Nursery

Onattukara

Land preparation for the second crop

Onattukara – A poor second crop

Azolla in Onattukara Natural way of soil fertility replenishment

RICE – SESAMUM ROTATIONAL FARMING

Rice cowpea integration

Rice- Banana- Cassava System

KOLE LAND RICE ECOSYSTEM

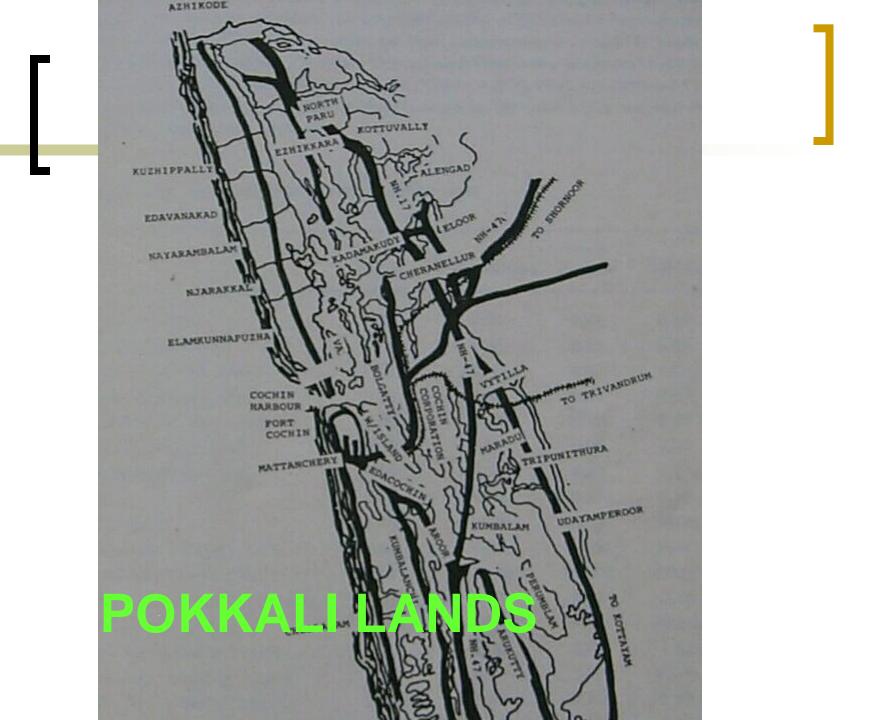
- Location
 Malappuram
- : Trichur and
- Extent : 13000 ha
- Cropping pattern : Rice Rice (35%)
 - Rice Fallow (65%)

Season

- : Jan.–May (Puncha)
 - Aug.- Dec. (Mundakan)

Kole lands – Pump house

Kole lands with Inrigation Canal


Kole lands with Irrigation Channel

KOLE LANDS

- Soil texture : Sandy loam to sandy clay
- Organic matter : 2.07 4.16
- Soil reaction : Acidic (pH 2.6 6.3)
- ✤ EC : 0.16 –15ds/m
- Yield : 4500-7500 kg/ ha.

POKKALI RICE ECOSYSTEM

- Tidal wet lands of Kerala
- * 24000 ha in the coastal area of Ernakulam, Alappuzha, Trichur and Kannur districts
- Tidal inundation & consequent salinity
- ***** Rice & Prawn are rotationally grown
- Considered as sustainable system

Pokkalt fields a view during the high saline phase

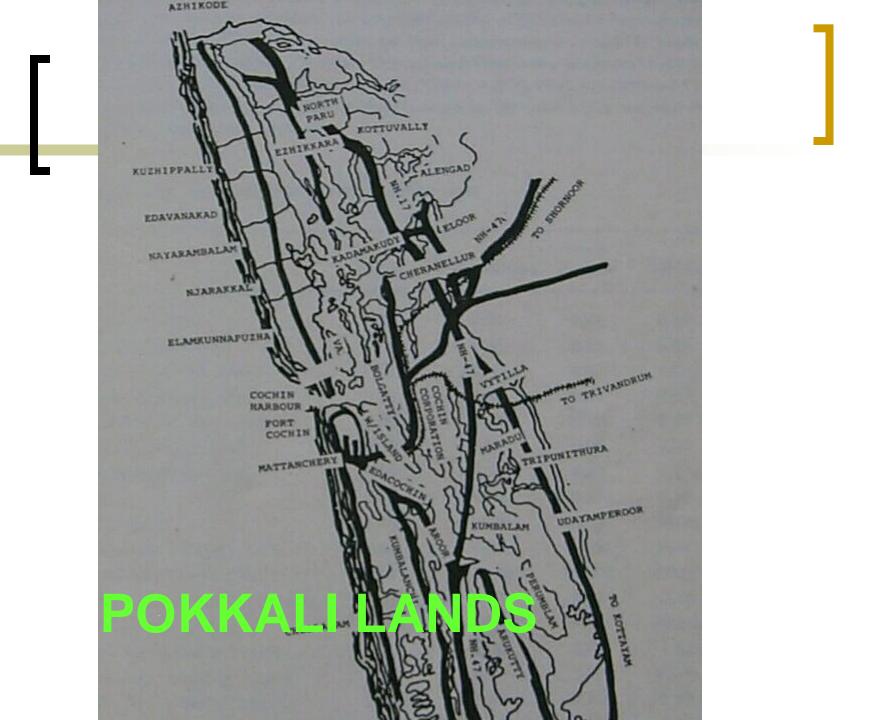
POKKALI SOILS

- ***** Basically acidic
- ***** pH : 2.8 to 4.5
- Saline water inundation from October
- Salinity: 12 24 ds/m during summer
- Reclamation required for rice cultivation

Two phases of Pokkali Agro-Ecosystem

Low saline phase June to November High saline phase December to May

Pokkali soils – mounds are necessary for reclamation of soil



Seeds are packed in country baskets for soaking

Seed baskets ready for soaking

POKKALI RICE ECOSYSTEM

- Tidal wet lands of Kerala
- * 24000 ha in the coastal area of Ernakulam, Alappuzha, Trichur and Kannur districts
- Tidal inundation & consequent salinity
- ***** Rice & Prawn are rotationally grown
- Considered as sustainable system

Pokkalt fields a view during the high saline phase

POKKALI SOILS

- ***** Basically acidic
- ***** pH : 2.8 to 4.5
- Saline water inundation from October
- Salinity: 12 24 ds/m during summer
- Reclamation required for rice cultivation

Two phases of Pokkali Agro-Ecosystem

Low saline phase June to November High saline phase December to May

Pokkali soils – mounds are necessary for reclamation of soil

Seeds are packed in country baskets for soaking

Seed baskets ready for soaking

Damage due to floods – a regular occurrence in Pokkali fields

Pokkali rice on mound tops ready for dismantling

Luxuriant growth of the Pokkali rice

Harvesting in knee deep water

PRAWN CULTURE

Prawn during saline phase Traditional practice - prawn filtration Prawn seeds are attracted & reared Prawn yield 300-1000kg/ha

Income from prawn yields compensates the losses from rice cultivation

Fish species found suitable

- Cyprinus carpio
- Oreochromis mossambicus
- Tricogaster pectoralis
- Chana striata
- Clarius batrachus

Effect of rice fish integration on fish survival and yield

Fish treatments	Survival %			Fish Yield kg/ ha		
	1999	2000	Pooled	1999	2000	Pooled
Without fish						
Male tilapia	36.2	38.1	37.6	209.1	224.2	216.7
Etroplus-1999 Rohu-2000	0.0	16.0	8.0	0.0	25.4	12.7
CD (0.05)	2.5	3.2	3.8	18.2	19.3	21.8

Oreochromis mossambicus

Economic analysis of rice-fish-prawn integration

in *Pokkali* fields

Farming system	Expendit ure (Rs/ha)	Yield (kg/ha)	Gross returns (Rs)	Net returns (Rs.)	B:C ratio
Rice alone	11450	3488	22672	11222	1.98
Rice-fish	17700	3488 (R) 216 (F)	31346	13646	1.77
Rice–fish -prawn	46700	3488 (R) 216(F) 425(P)	95090	48390	2.03

Rice @ Rs. 6500/ ton

Fish @ Rs. 40/kg

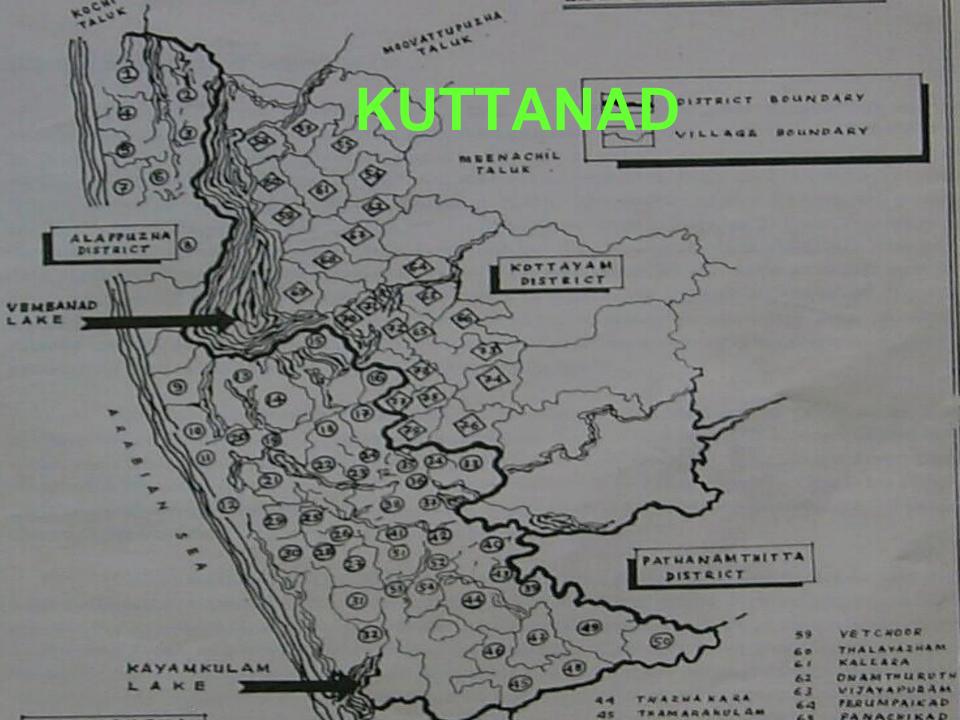
Prawn @ Rs. 150/ kg

Pokkali model

Rice during low saline phase Rice-fish simultaneously Prawn culture/prawn filtration rotationally

No way interfere with seasonal rhythm Components well mingle Accretion rather than depletion in soil fertility Ecologically sound Environment friendly Socially acceptable

RICE-FISH / PRAWN INTEGRATED FARMING


Sustainable, Economic, Ecologiand

KUTTANAD RICE ECOSYSTEM

- o Deltaic formation of four river systems
- o Location : 1 2.5 m below MSL
 - : 56000 ha
- o Seasons :

o Extent

Main crop - Puncha (Oct./Nov. - Jan./Feb.) Additional Crop (June/July - Sept./Oct.)

KUTTANAD SOILS

KARAPADAMS - 33,000 ha KAYAL LANDS - 13,000 ha KARI SOILS - 9,000 ha

KARAPPADOM SOILS

- River borne alluvial soils
- Extent : 33000 ha
- Texture : Silty clay
- Soil reaction : Moderately acidic high salt content, and a fair amount of
 - decomposing organic

matter

- Salinity hazard
- Fertility : Available P and K low

KAYAL LANDS

- Reclaimed beds of Vembanad
- Extent : 13000 ha
- * Texture
- : Silty clay
- * Soil reaction : Slightly acidic to neutral
- Salinity
- Fertility

- : Salinity affected
- : Low in available nitrogen and phosphorous but
- comparatively

rich in potassium

KARI LANDS

- Extent : 9000ha
- Colour : Deep black charcoal
- Heavy in texture, poorly aerated and illdrained
- Pieces of wood seen embedded in the subsoil
- Soil cracks during summer
- Soils are affected by severe acidity (pH 3-4.5)
- Periodic saline water inundation
- Toxic accumulation of Fe & Al

An overview of Kuttanad rice fields

A WITH AN

1 State Sugar

Pump house – an integral part of puncha lands

A start

1818 1 19

Low head axial flow pump (Retti & para)

Aquatic biomass – a source of organic manure

10

Wet broadcasting

ensures uniform plant population

Uneven land leveling results

patchy stand of seedlings

A uniform crop stand at

seedling stage

and the second

RICE FIELDS IN KUTTANAD

- Under utilised
- Mostly single cropped
- Fallow period > 6 months
- Returns <25000/ acre</p>
- Considerable scope of improvement by Farming system approach.

Farming system models developed at RARS, Kumarakom

In two decades

Development of models at station level

- Evaluation of the models
- Validation at farm level
- Transformation from simultaneous to rotational
- Lateral diffusion to farmers fields
 ORU NELLUM ORU MEENUM

Cyprinus – versatile species

Ploughing and harrowing

Grass carp- weed control

Cost of production of paddy - before and after fish integration

cost of production of puddy before and after fish megration											
S1.	Item	Before fish				After Fish					
No		1995 (Puncha) Cost(Rs)		1996(Virippu) Cost(Rs)		1996(Puncha) Cost(Rs)		1997(Virippu) Cost(Rs)			
•											
		Material	Labou	Materi al	Labou r	Material	Labou r	Mate rial	Labour		
1	2	3	4	5	r 6	7	8	9	10		
Area of trial plot in acres		5.50		5.50		5.50		3.00			
	EXPENSES										
1	a. Land preparation b. Bunding	0 0	1483 472	0 0	2238 575	0 0	634 606	0 0	486 790		
2	Seed and sowing	808	101	842	108	876	108	1021	115		
3	Weeding	76	3198	76	3631	0	1460	0	3013		
4	Plant protection	381	270	393	324	232	229	66	103		
5	Manuring/liming	2008	298	2376	342	2200	319	2581	510		
6	Other Inputs	346	894	371	1050	393	1062	0	1465		
7	Harvesting	0	427	0	674	0	685	0	642		
	TOTAL	3619	7143	4058	8942	3701	5103	3668	7124		
	INCOME	Qtls	(Rs)	Qtls	(Rs)	Qtls	(Rs)	Qtls	(Rs)		
1	Paddy	19	8967	28	14812	34	17144	35	17938		
2	Straw	0	371	0	449	0	225	0	309		
	TOTAL	19	9338	28	15261	34	17369	35	18247		
	PROFIT	(-)1405 222		2289		8599	7490				

GIANT FRESH WATER PRAWN

Prawn Yield using local wet feeds - 937 kg/ha Prawn yield using commercial feeds - 1519 kg/ha In 230 days Indicated the prospects of rice prawn integration

Integrating other components

- Coconut, banana, yams and other crops on the bunds.
- Fish
- Ducks
- Buffaloe

One acre paddy polder can additionally hold

- 2000 fish fingerlings
- 300 broiler ducks
- 1-2 buffaloes
- 20 coconut palms on the bund
- 40 banana plants
- 20-40 yams/cassava
- Single line fodder of 80m length.

Complementary effects

- On land preparation
- Manuring
- Weeding
- Plant protection

-Zero tilled rice field after fish harvest ready for planting

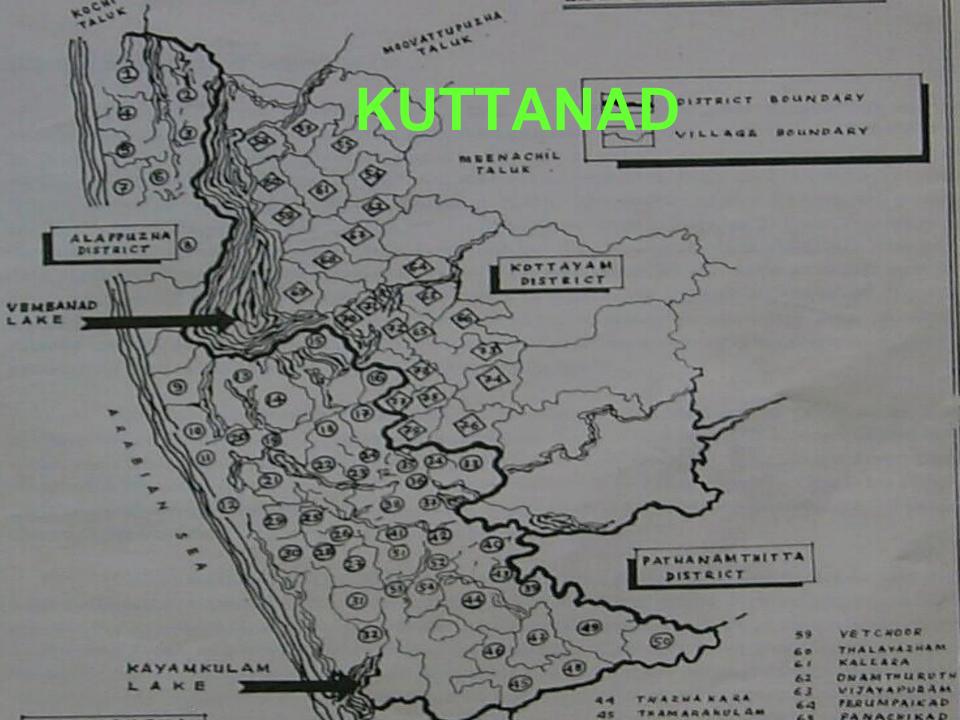
Economic benefits

- Cost of production rice reduced by 17.6 percent
- Increase in yield up to 50%
- Multilevel integration increased the returns 3-4 fold.

Ecological benefits

- Reduction in use of agricultural chemicals
- Improvements in soil conditions
- Recycling of agricultural wastes
- Perceptible improvement in soil biological properties.

CONCLUSIONS


- In wetlands rice should be the pivotal crop
 - Multiple cropping of rice as monoculture systems are not sustainable.
 - Use of increased external inputs year after year erode the biodiversity base and upset ecological balance.
 - Shift to biodiversity based multi commodity enterprises suited to local agro ecological conditions can perform better.
 - Such systems can significantly reduce high energy inputs and cost of production.
 - Farming system approach is capable of reducing carbon emission and sequestering of carbon in soils and plants

KUTTANAD RICE ECOSYSTEM

- o Deltaic formation of four river systems
- o Location : 1 2.5 m below MSL
 - : 56000 ha
- o Seasons :

o Extent

Main crop - Puncha (Oct./Nov. - Jan./Feb.) Additional Crop (June/July - Sept./Oct.)

KUTTANAD SOILS

KARAPADAMS - 33,000 ha KAYAL LANDS - 13,000 ha KARI SOILS - 9,000 ha

KARAPPADOM SOILS

- River borne alluvial soils
- Extent : 33000 ha
- Texture : Silty clay
- Soil reaction : Moderately acidic high salt content, and a fair amount of
 - decomposing organic

matter

- Salinity hazard
- Fertility : Available P and K low

KAYAL LANDS

- Reclaimed beds of Vembanad
- Extent : 13000 ha
- * Texture
- : Silty clay
- * Soil reaction : Slightly acidic to neutral
- Salinity
- Fertility

- : Salinity affected
- : Low in available nitrogen and phosphorous but
- comparatively

rich in potassium

KARI LANDS

- Extent : 9000ha
- Colour : Deep black charcoal
- Heavy in texture, poorly aerated and illdrained
- Pieces of wood seen embedded in the subsoil
- Soil cracks during summer
- Soils are affected by severe acidity (pH 3-4.5)
- Periodic saline water inundation
- Toxic accumulation of Fe & Al

An overview of Kuttanad rice fields

A WITH AN

1 State Sugar

Pump house – an integral part of puncha lands

A start

1818 1 19

Low head axial flow pump (Retti & para)

Aquatic biomass – a source of organic manure

10

Wet broadcasting

ensures uniform plant population

Uneven land leveling results

patchy stand of seedlings

A uniform crop stand at

seedling stage

and the second

RICE FIELDS IN KUTTANAD

- Under utilised
- Mostly single cropped
- Fallow period > 6 months
- Returns <25000/ acre</p>
- Considerable scope of improvement by Farming system approach.

Farming system models developed at RARS, Kumarakom

In two decades

Development of models at station level

- Evaluation of the models
- Validation at farm level
- Transformation from simultaneous to rotational
- Lateral diffusion to farmers fields
 ORU NELLUM ORU MEENUM

Cyprinus – versatile species

Ploughing and harrowing

Grass carp- weed control

Cost of production of paddy - before and after fish integration

cost of production of puddy before and after fish megration											
S1.	Item	Before fish				After Fish					
No		1995 (Puncha) Cost(Rs)		1996(Virippu) Cost(Rs)		1996(Puncha) Cost(Rs)		1997(Virippu) Cost(Rs)			
•											
		Material	Labou	Materi al	Labou r	Material	Labou r	Mate rial	Labour		
1	2	3	4	5	r 6	7	8	9	10		
Area of trial plot in acres		5.50		5.50		5.50		3.00			
	EXPENSES										
1	a. Land preparation b. Bunding	0 0	1483 472	0 0	2238 575	0 0	634 606	0 0	486 790		
2	Seed and sowing	808	101	842	108	876	108	1021	115		
3	Weeding	76	3198	76	3631	0	1460	0	3013		
4	Plant protection	381	270	393	324	232	229	66	103		
5	Manuring/liming	2008	298	2376	342	2200	319	2581	510		
6	Other Inputs	346	894	371	1050	393	1062	0	1465		
7	Harvesting	0	427	0	674	0	685	0	642		
	TOTAL	3619	7143	4058	8942	3701	5103	3668	7124		
	INCOME	Qtls	(Rs)	Qtls	(Rs)	Qtls	(Rs)	Qtls	(Rs)		
1	Paddy	19	8967	28	14812	34	17144	35	17938		
2	Straw	0	371	0	449	0	225	0	309		
	TOTAL	19	9338	28	15261	34	17369	35	18247		
	PROFIT	(-)1405 222		2289		8599	7490				

GIANT FRESH WATER PRAWN

Prawn Yield using local wet feeds - 937 kg/ha Prawn yield using commercial feeds - 1519 kg/ha In 230 days Indicated the prospects of rice prawn integration

Integrating other components

- Coconut, banana, yams and other crops on the bunds.
- Fish
- Ducks
- Buffaloe

One acre paddy polder can additionally hold

- 2000 fish fingerlings
- 300 broiler ducks
- 1-2 buffaloes
- 20 coconut palms on the bund
- 40 banana plants
- 20-40 yams/cassava
- Single line fodder of 80m length.

Complementary effects

- On land preparation
- Manuring
- Weeding
- Plant protection

-Zero tilled rice field after fish harvest ready for planting

Economic benefits

- Cost of production rice reduced by 17.6 percent
- Increase in yield up to 50%
- Multilevel integration increased the returns 3-4 fold.

Ecological benefits

- Reduction in use of agricultural chemicals
- Improvements in soil conditions
- Recycling of agricultural wastes
- Perceptible improvement in soil biological properties.

CONCLUSIONS

- In wetlands rice should be the pivotal crop
 - Multiple cropping of rice as monoculture systems are not sustainable.
 - Use of increased external inputs year after year erode the biodiversity base and upset ecological balance.
 - Shift to biodiversity based multi commodity enterprises suited to local agro ecological conditions can perform better.
 - Such systems can significantly reduce high energy inputs and cost of production.
 - Farming system approach is capable of reducing carbon emission and sequestering of carbon in soils and plants