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Abstract

Background: Pro-active and effective control as well as quantitative assessment of impact of climate change on malaria
requires identification of the major drivers of the epidemic. Malaria depends on vector abundance which, in turn, depends
on a combination of weather variables. However, there remain several gaps in our understanding and assessment of malaria
in a changing climate. Most of the studies have considered weekly or even monthly mean values of weather variables, while
the malaria vector is sensitive to daily variations. Secondly, rarely all the relevant meteorological variables have been
considered together. An important question is the relative roles of weather variables (vector abundance) and change in host
(human) population, in the change in disease load.

Method: We consider the 28 states of India, characterized by diverse climatic zones and changing population as well as
complex variability in malaria, as a natural test bed. An annual vector load for each of the 28 states is defined based on the
number of vector genesis days computed using daily values of temperature, rainfall and humidity from NCEP daily
Reanalysis; a prediction of potential malaria load is defined by taking into consideration changes in the human population
and compared with the reported number of malaria cases.

Results: For most states, the number of malaria cases is very well correlated with the vector load calculated with the
combined conditions of daily values of temperature, rainfall and humidity; no single weather variable has any significant
association with the observed disease prevalence.

Conclusion: The association between vector-load and daily values of weather variables is robust and holds for different
climatic regions (states of India). Thus use of all the three weather variables provides a reliable means of pro-active and
efficient vector sanitation and control as well as assessment of impact of climate change on malaria.
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Introduction

A topic of growing concern, and debate, is the role of climate

change in variability and trends in malaria [1–5]. Several countries

and regions have reported emerging or growing threat of malaria

due to change in climate [6–10]. While deaths due to malaria

depend on a number of factors [11–13] like vector control, access

to adequate medical facilities and immunological history of the

people, infections can be considered to depend primarily on

abundance of mosquito vector and exposure of the host to bites

and rate of transmission. However, for a population with given

immunological history, transmission can be assumed to be

constant, at least at short time scales (, years). Thus the

abundance of vectors and the degree of exposure can be said to

determine the vulnerability and the severity of the epidemic.

However, in regions of rapidly changing human populations, like

in many states of India, the relative roles of abundance and change

in exposure due to changing human population are not easy to

determine. A quantitative delineation of the role of weather

variables in malaria load can enable design of pro-active

mitigation based on vector control; implementation of such pro-

active vector control is becoming increasingly important in view of

reported resistance of mosquitoes to insecticides like DDT [14]. At

the same time, such quantitative relations between weather

variables and malaria can enable reliable projection of vulnera-

bility in a changed climate.

The importance of meteorological variables in genesis and

survival of mosquito have been known for a long time, although

the relative roles of these variables and various aspects are still

being investigated. However, fairly sharp and well defined ranges

of meteorological variables, especially temperature, are required

for genesis and survival of malaria vector, although these

thresholds also depend on the mosquito species [15–19]. For
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example, there are well known thresholds of minimum and

maximum of temperature for vector genesis and survival. Each

weather variable has a range in which it affects the mosquito

genesis and survival; a temperature above 16uC is required for

breeding and development of the aquatic stages of Anopheline

mosquitoes in the Tropics. Similarly, experiments indicate a

threshold of minimum temperature between 16uC and 19uC for

the development of Plasmodium falciparum (PF) malaria parasite.

Temperature affects the rate of reproduction of the pathogens, and

thus plays important role in the survival and transmission the

vector [20]. Temperature is also known to affect the gonotrophic

cycle (physiological process consisting of digestion of blood-meal

and development of ovaries), and longevity. However, other

weather variables like rainfall and humidity also play important

roles [20–21]. For example, amount, intensity as well as duration

of rainfall all play important roles in the dynamics of vector

population. Besides, other environmental variables like land use

and land cover also affect vector dynamics [22–23]. Rainfall can

significantly reduce the vector survival by flushing the larval

mosquitoes out of their aquatic habitat [17]; it can be logically

assumed that reduced larval survival will also lead to a smaller

population of adult mosquitoes. Both dryness and rainfall can

influence larval survival significantly, as shown by experiments

with simulated dry conditions [16–17]. Similarly, transmission can

be inhibited by development time of the pathogen larger than the

life span of the insect [18]. Higher temperature, on the other hand,

can lead to quicker maturity leading to higher number of off

springs during the transmission period [19]. Thus vector

abundance can be assumed to be primarily determined by the

climate (average weather regime) and the weather (variability

around the climate) of the region [15–22].

It is also known that the effect of environmental parameters on

vector population can be highly location-specific. The phenology

and population dynamics of mosquito can vary significantly with

altitude; a study based on weekly rainfall intensity in the Lake

Victoria basin showed significant differences in larval abundance

with altitudes [24]. It was found, for example, that for northern

Australia, determination of the periodicity and the amplitude of

mosquito population (abundance peaks) required consideration of

the frequency and the amplitude of the tides [25]; a flood plain or

a forested region is likely to require very different considerations.

Over India, several studies have shown relationship between

weather variables and malaria [26–28]. India with its complex

climatic heterogeneity, growing population, land-use and urban-

ization poses a unique challenge to identify role of climate change

in malaria load [29–31]. In particular, a region can experience

both decrease and increase in malaria prevalence as the

meteorological variables move in or out of the genesis window.

A robust and reliable assessment of vulnerability to malaria due to

climate change require quantitative, validated models of malaria

epidemiology that involve all the relevant weather variables;

assessments based on the trend of a single meteorological variable

do not have much relevance. While the role of meteorological

variables in malaria has been well recognized, and several attempts

have been already made to use weather-driven models for malaria

[32–33], most methods have used only a single meteorological

variable or time-averaged (weekly/monthly mean) values to assess

impact of climate change on malaria. However, dynamics of

mosquito population (genesis as well as mortality) depends on daily

variability of the weather variables [19]; in general, this daily

variability will be much higher than that in monthly-averaged

variables. Thus, vector abundance, and hence impact of malaria,

is likely to depend on the number of daily genesis windows.

There have been attempts to quantitatively describe the

prevalence of malaria relating entomological parameters to

malaria transmission that include many parameters like age-at-

infection, human blood index, entomological inclusion rate,

vectorial capacity etc. However, most of these attempts often do

not involve all the weather variables explicitly, and may involve

climate variables only indirectly [34] A critical gap is the relative

roles of the three meteorological variables (temperature, rainfall,

humidity) in relation to the number malaria cases. Although

models of population dynamics of vector that consider effects of

variables like temperature and rainfall have been considered [35–

36], they often lack validation against observed epidemiological

data. A model of malaria based on weather and exposure has been

validated against the observed malarial cases over Arunachal

Pradesh in north-east India [37]. However, there are several

aspects that were neither covered nor inferable from our previous

study [37]. An important issue is the robustness of the results in

terms of applicability to diverse climatic regions. This issue is

addressed in the present manuscript by considering climatically

and endemically diverse regions in terms of the 28 states of India;

these states represent climates from the tropical to the higher

latitudes. Another important issue is the delineation of the role of

weather variables from those of other socio-economic variables;

this issue is addressed in the present work by considering the

impact of human population. In particular, analysis with constant

and varying populations are carried out to quantify the impact of

change in the number of hosts (as against change in vector

population due to weather variables) in the disease load. While

impact of human population may be minimal in regions like

Arunachal Pradesh, the change (increase) in exposure due to

growth in human population can be appreciable in many areas of

India. Similarly, quantification of the roles of the three weather

variables is expected to fill a critical gap in our understanding of

the dynamics of malaria.

Methods

Ethics Statement
We declare that the data on malaria cases in this study was

collected and compiled by the co-authors from CSIR-IICT based

on records at the Public Health centres.

The collected epidemiological data from primary health centers

was analyzed anonymously and no particular patient by name was

involved. The study received clearance from the institutional

Ethical Committee at CSIR-Indian Institute of Chemical Tech-

nology.

Study Area
We consider the 28 states of India, characterized by wide ranges

of temperature, humidity and rainfall (Table 1). To apply our

analysis to the 28 states, we use the annual malarial case data from

the state health directorate. The population data was adopted

from www.faostat.fao.org.

Collection of Malaria Data
The data was collected from the Directorate of Health, State

Govts of India, based on cases reported from Primary Health

Centers (PHCs) from all the states containing data on epidemi-

ological aspects of Malaria number of blood samples collected

(NBSC)and the number of blood samples that tested positive

(NBSP) for either Plasmodium vivax (NPV) or Plasmodium falciparum

(NPF) infection, or mixed infection; thus blood sample positive

(NBSP) is the sum total of NPV, NPF and mixed type thus

provides the total cases of Malaria. The procedure for collecting

Relative Roles of Weather Variables and Malaria
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epidemiological data has been already described in an earlier work

[37]; in particular, the data did not involve any personal data or

identification of the individuals.

The Epidemiological data on malaria is available online in the

National Vector Borne Disease Control Programme(NVBDCP),

Ministry of Health & Family Welfare, Govt. of India, (URL: www.

nvbdcp.gov.in) and also at (http://nvbdcp.gov.in/Doc/mal-

situation-Oct13.pdf).

Thresholds for vector genesis
The threshold values of meteorological variables were adopted

from published literature. Although there have been reports of

association between malaria incidence and variables like rainfall

with large time lags like 2–3 months such long-term associations

are not consistent with the time scales of mosquito life cycles. In

our scenario, mosquito genesis takes place whenever favorable

meteorological conditions occur; while this time scale in practice

could be in hours, we consider daily variables for our description.

Each episode of mosquito genesis at daily scale leads to a vector

load through the process of survival in terms of biting mosquitoes;

this is turn leads to malaria load at daily scale. The annual load of

malaria is a sum of these daily values.

We first examine the relation between the annual vector loads,

calculated as vector abundance based on the number of genesis

days, to determine the relative roles of the meteorological

variables. Next we quantify the relative roles of the weather

variables (without the effect of size of the human population) and

the potential epidemiology (with effect of size human population)

and compare against the observed epidemiology.

Meteorological Data
A critical requirement for our analysis is a long-period,

homogeneous data on all the three meteorological variables

(temperature, rainfall and humidity) at daily (or shorter) time scale.

In the present case these daily values of near surface temperature

and near surface humidity were obtained from global NCEP

Reanalysis data in a 2.5u*2.5u grid and the daily rainfall on a

global 1.8u *1.8u grid [38,39]. The daily data at state level was

created through appropriate interpolation or averaging. The

advantage of NCEP Reanalysis is that it provides a comprehensive

and consistent long-period data for all the three variables on a

grid. It has been also shown that the interpolated NCEP

Reanalysis possesses good correspondence with high resolution

data from other sources over the region [40], and provides an

effective data set for studying role of weather variables in malaria.

Information on NCEP data is available on http://www.ncep.

noaa.gov/

Days of Vector Genesis
We define a (vector) genesis day as one on which all the three

variables: temperature, rainfall and humidity, are within their

respective ranges for genesis of mosquitoes. In particular, a day is

counted as a genesis day if

180CƒTƒ320C

20%ƒQƒ80%

1:5mmƒRƒ20mm

where T, Q and R represent, respectively, daily average

temperature, daily average humidity and daily rainfall, extracted

from daily gridded data from NCEP Reanalysis.

As vector dynamics takes place on a daily (or even shorter) time

scales, we have considered daily values of weather variables in our

analysis; the annual values are thus sum over these daily values. It

would be ideal, and interesting, to compare the daily values of

observed and computed malaria cases. However, as the current

data availability on the number of malaria cases is at annual scale,

the validation is carried out at annual scale; besides, analysis of

trends due to change in climate and population (hosts) is really

meaningful only with annual values.

Infection depends both on the number of encounters between

human and mosquito (exposure) leading to bites as well as

transmission of the parasite. The exposure is a complex function of

life style, migration and movement of the human population as

well as vector abundance. Naturally, only a fraction of the total

human population present is eventually bitten by mosquito;

however, it is expected that a larger vector density provides higher

exposure leading to more bites. Assuming that larger genesis days

allow larger prevalence of vectors, we consider the number of

genesis days in a year as representative of vector abundance or

vector load. To delineate the role of vector genesis days (and hence

climate change) and change of host population, we compute two

quantities, as defined below:

The annual vector load (EV) for each state for year n is

calculated as the sum of the days, NVG(n), in the year that satisfy

criteria for genesis of mosquitoes.

EV n,kð Þ~av kð Þ|NVG nð Þ

Thus EV represents the number of vector genesis days with a

constant host (human) population for the state k. It is assumed that

the actual vector load will be a result of modulation of the number

of vector genesis days by other parameters like land use and land

type not explicitly included here; this modulation for a state is

represented through the coefficient av(k) characteristic of the state.

The annual potential malaria load is calculated by including the

effect of human population as

Ep k,nð Þ~ap kð Þ|NVG k,nð Þ| NH k,nð Þ
NH k,2000ð Þ

Here NH(k,n) is the human population for the state k in the year n.

The coefficient av(k) and ap(k) characterize our model in terms of

modulation of vector load and malaria load through processes not

explicitly included. For example, ap(k) can contain information

specific to the state like immunological history (transmission

coefficient), and land use. Since only a fraction of the bites will

result in infection these coefficients generally would have values

%1, depending on the number of mosquitoes that carry malaria

parasites and encounter human host. However, to isolate the

effects of vector genesis we use a single value (0.007) of av(k) as a

scaling factor to focus on the role of vector load; thus effects of

variation due to exposure and transmission from state to state are

not considered here. Similarly, a single value of (0.002) is used for

ap(k); the difference in the values of av(k) and ap(k) is to ensure that

the actual values of Ev and Ep are of similar magnitudes. These

values of av(k) and ap(k) were obtained through an iterative process

to arrive at minimum differences between recorded malaria cases

(EO(k,n)) and calculated values of malaria for one year and kept

fixed for the other years [37]. In other words, the values of av and

av represent optimum values to obtain best fit between the

simulated and the observed values in a statistical sense.
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Results

The 28 states of India (Table 1) show substantial variations in

variables like annual maximum and minimum temperature. The

number (in %) of days satisfying genesis criteria, in terms of all the

three weather variables can be very different from those based on a

single variable. Indeed, percentages of genesis days based on

individual weather variables (T, Q or R) show significant

differences not only in their values but also in their variability;

the percentage of days based on all the three variables is

significantly smaller than that for any single variable, as expected.

The inter-annual variability in the % of genesis days with all the

three meteorological variables is also very different from the

corresponding variability with only one meteorological variable

(Figure 1).

A comparison of vector load, with vector abundance derived

from all the three weather variables, shows excellent agreement

(Figure 2) for most of the states, both with and without modulation

by growth in human population (EP and EV, respectively). As

expected from the linear growth in human population in many

states, the potential malaria load is always larger than the vector

load, with difference between the two generally increasing with

time (Figure 2) due to normalization with respect to the population

of 2001–2010. However, while correlation between Eo and EP is

generally better than that between Eo and EV (Table 2), the effect

is not really appreciable; in particular, against 21 states with

correlation coefficient equal to or more than 0.8 for predicted

potential malaria load the corresponding number for vector load is

18 (Table 2).

To examine the relative roles of the three weather variables,

vector load was first calculated with each of these three variables

separately. With only temperature as the condition for mosquito

genesis, the calculated number of malarial cases has very little

correspondence with the number of reported cases (Figure 3);

Figure 1. Comparison of % of days that satisfies criteria for vector genesis in terms of individual meteorological parameters like
temperature (T), humidity (Q) and rainfall (R) and all the three parameters combined over 28 states of India for the period 2001–
2010.
doi:10.1371/journal.pone.0099867.g001
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indeed, only five states are characterized by correlation coefficient

between Eo and EV significant at 99% confidence level for the

degrees of freedom involved; the corresponding number for EP is 8

(Table 2). Similar conclusions also hold for epidemiology load

calculated with only rainfall as the condition for mosquito genesis

(Figure 4), and only humidity as the condition for mosquito genesis

(Figure 5); the numbers of states with correlation coefficient

between Eo and either EP or EV significant at 99% confidence

level are very few with either rainfall or humidity (Table 2).

It can be seen that the linear trends in the number of genesis

days with individual weather variables can be quite different from

those with all the three weather variables (Figure 6, top panel); in

particular, the trends with the combined criteria can be either

larger or smaller than those with a single weather variable. For

easy assessment of significance, all trends have been expressed as

percentage of respective standard deviation. More importantly,

both appreciable positive and negative trends are present across

the states (Figure 6, top panel). The linear trends calculated with

either Eo and EP, match well with those for observed number of

malaria cases for most states (Figure 6, bottom panel). There is no

significant or systematic improvement in the calculated trends

against the observed trends, indicating the number of genesis days

as the driving factor for the changes in malaria cases. There are

only four states, Jharkhand (JH), Jammu and Kashmir (JK),

Meghalaya (MG), and Maharashtra (MH), for which the trends

are in opposite direction, but with marginal difference; out of these

four states, the first three are mountainous. It is noteworthy;

however, that inclusion of change in human population often

reduces the trends in calculated malaria cases (Figure 6, bottom

panel). While many states show decline in the number of genesis

Figure 2. Comparison of observed annual epidemiology load (EO) with epidemiology load based on vector load (EV) calculated
using days of vector genesis and constant human population with potential epidemiology load (EP) (growth in human population
included) over 28 states of India. The epidemiology is calculated as the number of blood samples that tested positive. The days of vector genesis
here represent days in a year that fulfill combined meteorological conditions of temperature, humidity and rainfall for genesis of mosquitoes. The
calculated epidemiology has been scaled by a factor (500 for which marked * and rest with 1000, as indicated) for easy comparison.
doi:10.1371/journal.pone.0099867.g002
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days and corresponding decline in malaria load, a few states show

significant positive trends, notably Maharashtra (MH) and Tripura

(TP) (Figure 6, bottom panel). A few states, notably Himachal

Pradesh (HP), Rajasthan (RJ) and Meghalaya (MG), show steep

rise in both malaria prevalence and genesis days in recent years,

indicating, once again, the driving role of the weather variables.

Discussions and Conclusions

The relative roles of weather variables in vector genesis, and

increase in exposure due to growth in human population, are

critical inputs for many issues like effectiveness of vector control

and assessment of impact of climate change. Our results show that

vector load defined in terms of genesis days calculated from the

combined daily values of temperature, rainfall and humidity

provides a close association with malaria; none of the weather

variables alone provides significant skill.

The present results, along with our earlier results on Arunachal

Pradesh [37], show that the association between weather variables

and malaria is robust in terms of applicability to diverse climatic

regions; the 28 states of India represent climates from the tropical

to the higher latitudes and regions of varying endemicity. Another

important insight is the delineation of the role of weather variables

from the impact of human population in the disease occurrence;

our results show the weather variables to be the primary drivers.

Death due to malaria depends on a host of processes like vector

control, quality of health services, land management as well as

public awareness. However, identification of factors responsible for

the vector dynamics can reduce the uncertainties in designing

control and mitigation strategies. Our identification of the strong

association between vector loads computed based on combined

Figure 3. Comparison of observed annual epidemiology load (EO) with epidemiology load based on vector load (EV) calculated
using days of vector genesis and constant human population with potential epidemiology load (EP) (growth in human population
included) over 28 states of India. The annual epidemiology is calculated as the number of blood samples that test positive. The days of vector
genesis represent days in a year that fulfill only meteorological condition of temperature for genesis of mosquitoes. With only temperature as the
condition for mosquito genesis, the calculated EP has very little correspondence to the observed EP (Figure 1); only a few (5–8) states show significant
correlation (Table 2). The annual epidemiology has been scaled by a factor (500 for which marked * and rest with 1000, as indicated) for easy
comparison.
doi:10.1371/journal.pone.0099867.g003
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conditions of weather variables at daily scale provides a basis for

forecasting malaria outbreak at short time scales by using high

resolution weather monitoring and forecasts. The present results

can enable methodology for identification of the peaks in vector

population which would precede the disease outbreak by a typical

incubation time of the parasite in the human host [37]. It is worth

emphasizing that the toll of the epidemic, in terms of deaths, will

also depend critically on several other factors like access to health

care, especially in remote areas [41]. To further quantify the

association between vector load and disease prevalence it is

necessary to calibrate the parameters for each region through

extensive observational programs.

In the same way that we have considered trends in annual loads,

it is possible to examine trends in seasonal or even daily vector

loads. A primary requirement for such an analysis is reliable

malaria data at seasonal/daily scales over each state. Similarly,

availability of systematic malaria data over smaller spatial units

(like districts) can be used for examining trends at higher spatial

resolution. However, as the changes in climate as well as in

population are slow processes, analysis at annual scale is logical.

The calculation of days of vector genesis in the present version is

based on daily values of the meteorological variables. It is

desirable, and possible, to include episodic (say 3-day window)

values of the variables to include effects of the preceding

meteorological conditions on vector genesis. This would ensure

that flooding due to rains before genesis day can also affect the

survival of the larvae. Similar arguments are also valid for extreme

temperature and dryness. However, we have not included these

effects here explicitly for simplicity; our results based on only the

one-day criteria may be further improved due to multi-day

Figure 4. Comparison of observed annual epidemiology load (EO) with epidemiology load based on vector load (EV) calculated
using days of vector genesis and constant human population with potential epidemiology load (EP) (growth in human population
included) over 28 states of India. The annual epidemiology is calculated as the number of blood samples that positive. The days of vector genesis
here represent days in a year that fulfill only meteorological condition of rainfall for genesis of mosquitoes. The annual epidemiology has been scaled
by a factor (500 for which marked * and rest with 1000, as indicated) for easy comparison.
doi:10.1371/journal.pone.0099867.g004
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(episode) based criteria. Similarly, we have avoided detail effects of

the meteorological variables on the life cycle of mosquito. For

example, the effect of rainfall on mosquito dynamics is likely to be

more at the larval stage. However, since reduction in the number

of larvae due to (flushing by) rainfall is likely to reduce the number

of adult mosquitoes, we have not separated the differential effect at

different stages of the mosquito life cycle.

The results bring out clearly the minimum necessary analysis for

investigating impact of climate change on malaria. At the same

time, close relation between vector genesis days and the disease

provides an excellent tool for investigating impacts of regional

climate change on malaria, especially to investigate impact

scenarios where the change, rather than the actual malaria load

cases, is more important. In addition to genesis, there are other

processes that may become important in situations of extreme

climate change. For example, the life cycle of the malaria parasite

inside the mosquito and the human host is important for

transmission. Large changes in temperature can lead to reduction

in the duration of gonotrophic cycle and in the extrinsic

incubation period of malaria parasite and affect the rate of

transmission [42]. Similarly, possible changes in the immunology

profile of a people due to factors like migration may also become

important in the long term. However, most of the processes in the

post-larval stages become less important if vector sanitation is

carried out at the genesis sites. The framework and the

methodology are quite generic and can be applied in any

geographical location with required calibration.

In practice, several species of mosquito are responsible for

malaria in India [43–46]. The genesis and survival criteria may

vary somewhat from species to species; similarly, the effects of local

environmental conditions like run-off, land use and water

stagnation may affect mosquito dynamics. However, as our results

show, these are likely to be secondary effects.

The two parameters that define our model, av (k) and ap (k),

characterize various local factors (for a state) that modulate vector

dynamics as well as malaria load. While we have considered a

Figure 5. Comparison of observed annual epidemiology load (EO) with epidemiology load based on vector load (EV) calculated
using days of vector genesis and constant human population with potential epidemiology load (EP) (growth in human population
included) over 28 states of India. The annual epidemiology is calculated as the number of blood samples that positive. The days of vector genesis
here represent days in a year that fulfill only meteorological condition of humidity for genesis of mosquitoes. The annual epidemiology has been
scaled by a factor (500 for which marked * and rest with 1000, as indicated) for easy comparison.
doi:10.1371/journal.pone.0099867.g005
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single value each for ap and av, it is possible, and desirable, to

consider values ap and av that represent characteristics of a state.

However, this may not change our results qualitatively, as it would

only mean changing the values of ap and av to calculate Ev and Ep

for each state, while increasing the complexity of the model. For

practical application, it would be necessary to determine the

parameters like Ep for different states and different seasons. As

discussed in our earlier work [37], this is possible by considering

climatological conditions as well as factors like population and

seasonablity of outdoor activity (exposure). The methodology for

such an extension is, however, straight forward.
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