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Chapter 5: Classifying remotely sensed environmental metrics 

 

5. 1 Introduction 

 

The objective of this chapter was to create a land cover dataset for the study site where the 

classes would be selected based on the potential associations between population or 

development and the environment that were found in the literature and during field 

observations.  

 

Remotely sensed satellite images can be used to obtain information about environmental 

conditions across large spatial areas of the Earth (Lillesand et al. 2004).  Land features such as 

grass, concrete, water, woodland and agriculture reflect electromagnetic radiation in different 

ways and have specific spectral patterns (Campbell 2002).  These different patterns enable 

remote sensors to distinguish between different types of land covers.  There are two 

overlapping types of classification that can be performed using remotely sensed images, (i) land 

cover mapping and (ii) land use mapping.  Land cover maps classify information on the type of 

feature present on the Earth‟s surface.  Land use maps classify information on the “human 

activity or economic function associated with a specific piece of land” (Lillesand et al. 2004 

p.215).  For operational purposes it is often necessary to develop classification schemes that 

combine land use and land cover classes.  This can result in the need to split spectrally similar 

classes.  For example, Koch et al. (2007) found that agricultural practices in Paraguay could be 

split into two distinct types; (i) large scale commercial farms, and; (ii) small scale production by 

small land holders.  Spectrally the differences between the two types of agriculture were very 

small.  However, using spatial and textural information contained within the scene it was 

possible to distinguish between the two quite clearly. 
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5.1.1 Using Landsat for land cover classification 

 

The Landsat programme provides a large historical and largely uninterrupted Earth observation 

data set dating back to 1972.  The current satellite and that used for analysis in this research is 

Landsat 7 Enhanced Thematic Mapper Plus (ETM+) with a 30 m spatial resolution (Irons 2010).   

 

There are important differences between detection and identification of land cover classes 

(Millette et al. 1995).  Detection only requires a change in contrast between a group of pixels 

and the background, whereas, identification requires each feature to have a unique spectral 

signature for it to be computationally distinguished from other classes.  Thus, land features with 

similar spectral properties may be easily detected but more difficult to identify using spectral 

information in a satellite sensor image (Blaschke et al. 2005).  The data from Landsat ETM+ can 

be used to map land cover classes however, the potential for mapping land uses is limited due 

to the spatial resolution of the sensor.  Anderson et al. (1976) suggested that nine classes could 

be classified using 30 m spatial resolution imagery.  This is because, for example, the 30 m 

resolution imagery is not able to identify different types of agricultural crops (Millette et al. 1995).  

However, spatial information contained within the remotely sensed image can be used in 

conjunction with the spectral information to classify land features with similar spectral properties.   

 

5.1.2 Object-based land classification 

 

Often, to distinguish between different land cover classes, the value and texture of surrounding 

pixels can be used (Aplin and Smith 2008; Blaschke and Strobl 2001; Flanders et al. 2003).  

Unlike per-pixel classification methods object-based approaches to image analysis allow the 

use of spectral and spatial information contained within an image to be used in the classification 

process (Blaschke and Strobl 2000; Flanders et al. 2003).  

 

To make use of the textural and spatial data available in remotely sensed imagery object-based 

analysis uses image segmentation prior to classification which groups pixels with similar 

attributes together into homogenous objects.  This is conducted by first considering each pixel 

as a separate object and merging similar objects using localised homogeneity thresholds.  Once 
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the homogeneity threshold is exceeded the merging process ends and an object boundary is 

defined (Darwish et al. 2003).  When attempting to split spectrally similar but spatially distinct 

classes in classification procedures object-based analysis can be more accurate than pixel 

based methods.  For example, results in Koch et al. (2007) showed that an object-based 

approach had an overall accuracy of 84% compared to 43% for maximum-likelihood per-pixel 

classifier.   

 

For operational purposes the classification of Landsat ETM+ data for Assam merged land cover 

and land use classes.  Several of these classes were spectrally very similar but could be 

identified using a combination of spatial and textural information.  Therefore, object-based land 

use/land cover classification methods were used.   

 

5.2 The problem of cloud in land cover classification using Landsat data  

 

Estimates suggest that cirrus cloud covers up to 30% of the Earth‟s surface at any time (Wylie 

and Menzel 1999) and this can rise to more than 50% in tropical and sub-tropical locations 

(Chepfer et al. 2000) where cirrus cloud can persist for extensive periods (Comstock et al. 

2002).  The low optical depth of cirrus clouds can cause problems for land cover classification 

(Dessler and Yang, 2003) because pixels often contain a mixture of atmospheric cloud and land 

signals.  Unlike cumulus cloud, cirrus cloud is partially transparent and, thereby, difficult to 

remove entirely. However, left in place, cirrus cloud can be problematic for studies utilising 

remotely sensed satellite sensor imagery for further analysis because pixels that are cloud 

covered may be incorrectly assigned to a land cover class with similar spectral and thermal 

properties to clouds rather than to the true underlying land cover class.   

 

The Landsat ETM+ sensor lacks wavebands that are able to detect cirrus clouds which, by 

contrast, are available on other satellite sensors such as the Moderate Resolution Imaging 

Spectroradiometer (MODIS) (Gao et al. 2002).  The presence of these bands enables more 

accurate cloud masks to be developed (Platnick et al. 2003).  Thus, cirrus cloud cover is a 

problem when using Landsat ETM+ data. Irish et al. (2006) highlighted that “...the ETM+ 

spectral bands do not easily detect semi-transparent clouds such as Cirrus Uncinus...Cirrus 
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Fibratus and cloud edges” (p.1180).  If an image on a specific date is required for subsequent 

data analysis there may be no option but to select cloud affected imagery and find a method to 

identify and mask this cloud (El-Araby et al. 2005).  Therefore, although the data cost constraint 

for regional studies has been removed for Landsat data their use may be hampered by a lack of 

simple to implement cirrus cloud removal procedures.   

 

Initial analysis of the Landsat ETM+ images available for Assam revealed substantial amounts 

of cloud (Table 5.1).  Transparent clouds were a particular problem in Assam as they were 

found to have very similar spectral properties to several intended classes.  For example, shallow 

water pixels with sand and silt had similar properties to areas of bare land with cloud coverage.  

Wet bare land also had similar spectra to transparent clouds.  Often remotely sensed images 

with such cloud cover issues would not be considered for analysis (Foody 2002: Wen et al. 

2001).  Operational reasons such as the need to have satellite data near to the time of the 2001 

Indian census enumeration meant these images were the most suitable for subsequent 

analysis. The presence of cloud and transparent cloud would potentially result in significant 

limitations for the environmental data to be used in subsequent analysis.  Therefore, before 

image classification was conducted, cloud coverage was identified and removed.   
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Table 5.1 Cloud percentages for Landsat scenes covering Assam in 2001
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135/041 9 37 90 99 32 95 79 33 17 11 

135/042  10 38 80 94 98 88 87 83 1 

136/041 13 57 51 9   100 98 6 1 

136/042 0 24 38 15  88 100 94 7 37 

137/041  32 47  96 56 71 87 4 7 

 

5.2.1 Identifying and masking cloud in Landsat Data 

 

Several cloud identification and masking techniques have been proposed for Landsat data.  

Helmer and Reufenacht (2005) created cloud and cloud shadow masks for Landsat Thematic 

Mapper (TM) imagery using the Iterative Self-organising data analysis (ISODATA) technique 

and manual editing.  Results were variable with 73% to 87% overall accuracy for images from 

2000, but 18% to 92% in 1991.  

 

To increase discrimination between low altitude cloud and ground features with similar spectral 

properties such as rooftops Melesse and Jordan (2002) augmented the data to be used in 

ISODATA with the Landsat TM thermal band.  Data were also augmented using the normalized 

difference vegetation index (NDVI) to increase discrimination between low altitude cloud and 

ground features with small amounts of vegetation cover.  Masks created using ISODATA with 
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 Source: GloVis website metadata files http://glovis.usgs.gov/  
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augmented data contributed to a 2.5% increase in accuracy compared to a fuzzy classifier.  It 

was concluded that the additional work required could not be justified for such a small increase 

in accuracy.  However, any increase in the accuracy of a cloud mask will result in increased 

accuracies if data are required for further analysis.  Unsupervised classifiers such as ISODATA 

are suitable when scenes have several very distinct classes.  Optically thin cirrus clouds and 

cloud edges often allow some form of spectral information from the ground below to be 

transmitted (Wang et al. 1999).  Therefore, particular ground features with similar spectral 

properties to transparent cloud may have higher numbers of pixels incorrectly assigned to them.  

Using such classification methods may, therefore, increase inaccuracies when using the images 

for further analysis. 

 

Several studies have created cloud masks using supervised methods of classification that 

depend on defining thresholds in specific bands.  Song and Civco (2002) used brightness 

thresholds for Landsat TM band 1 and band 4.  Martinuzzi et al. (2007) used Landsat ETM+ 

band 1 and band 6.1 (low gain thermal band).  Wang et al. (1999) used TM band 1 and band 5.  

Thresholds were used in different ways to identify cloud and cloud shadows.  For example, 

Song and Civco (2002) compared the brightness in a main image (used for further analysis) with 

a reference image to create a brightness difference image.  Band thresholds and brightness 

differences were then used to create cloud masks.  Wang et al. (1999) used multi-image 

compositing or fusion for cloud masking.  Cloud masks were created using absolute brightness 

differences between the main image and a reference image.  The largest differences were said 

to be more likely to represent cloud.  There were omission errors with this method where cloud 

was present in both the main and reference image.  

 

To identify cloud edges or thinner clouds Song and Civco (2002) and Martinuzzi et al. (2007) 

used tolerance thresholds to extend the thresholds.  A Digital Number (DN) tolerance threshold 

of 10 was employed by Song and Civco (2002) whereas Martinuzzi et al. (2007) used a three 

pixel buffer around each masked cloud. 
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Although not designed to be used as a per-pixel cloud mask, the scene averaged automated 

cloud cover assessment (ACCA) algorithm identifies clouds in Landsat ETM+ imagery (Irish 

2000).  The method integrates brightness, temperature and composite thresholds to 

discriminate cloud from a range of land cover types that can have similar spectral properties to 

clouds such as bare sand and rock.  Such a mask is created as part of the procedure and Irish 

et al. (2006) recommended that this mask could be made available when users download 

Landsat ETM+ imagery. 

 

5.2.2 Limitations of Cloud Masking Methods 

 

The techniques highlighted above all have limitations for creating accurate cloud masks.  The 

main limitation for cloud mask creation using Landsat imagery is the lack of a band designed to 

identify cirrus clouds.  Irish et al. (2006) described the clouds identified by the ACCA method 

“...as optically thick or nearly opaque...” (p. 1180).  The series of thresholds used for the ACCA 

algorithm enables a hierarchical model to be built that can separate cloud, non-cloud and 

ambiguous pixels from a range of land covers with similar spectral and thermal responses.  

However, the ACCA method suffers from omission errors associated with thin cirrus clouds 

(Irish et al. 2006).  The method also suffers from commission errors associated with low solar 

illumination over snow and ice (Choi and Bindschadler 2004).   

 

Image compositing methods such as those used in Wang et al. (1999) could require unfeasibly 

large numbers of images to decrease commission errors and in sub-tropical and tropical 

locations it may not be possible to acquire imagery with acceptable levels of cloud (< 40%) 

during particular times of the year.  DN or pixel buffer tolerance thresholds can help mask 

transparent cloud.  However, DN thresholds will introduce commission errors by using a blanket 

threshold across the whole image.  A pixel buffer tolerance is likely to decrease these 

commission errors as it adds tolerances only to areas already identified as clouds.  Pixel-buffer 

tolerances will be affected by omission errors associated with areas of cloud not identified in the 

original mask. 
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5.2.3 Developing an Improved Method 

 

Few cloud masking methods for Landsat imagery have been developed.  Those available have 

been described and associated key limitations discussed.  From this, it was necessary to build 

upon existing methods to develop an improved technique for cloud removal to ensure that cirrus 

clouds were captured in a mask.  Consequently, this study used the Automated Cloud Cover 

Assessment (ACCA) method to mask cloud from images in a sub-tropical area affected by 

seasonal cloud.   The ACCA method was adapted to increase the accuracy of identification of 

semi-transparent cloud using a combination of widely available pixel-based and object-based 

tools. 

 

5.3 Cloud Cover Removal Method 

 

Prior to land cover classification, cloud and transparent cloud was identified and removed from 

all images.  First the ACCA method as presented in Irish (2000) and Irish et al. (2006) was 

conducted before adaptations were made to identify transparent cirrus clouds and cloud edges.   

 

5.3.1 Automated Cloud Cover Assessment Algorithm  

 

The ACCA algorithm combines bands two through five and seven of Landsat ETM+ data in 

eight filters designed to distinguish between cloud and non-cloud pixels.  Irish (2000) developed 

a set of optimised parameters that can estimate the amount of thick and nearly opaque cloud in 

an image. The algorithm comprises of two passes through the data.  “Pass one” identifies and 

removes non-cloud features from an image creating a cloud mask.  It is composed of eight 

filters and the processing required for each filter and the reason for their use is detailed in Irish 

(2000) and Irish et al. (2006). “Pass two” filtering uses the temperature characteristics of clouds 

identified in “pass one” to identify cloud pixels missing from the “pass one” mask.  However, 

“pass two” filtering is only performed if the desert index is greater than 0.5, the cold cloud 

population is over 0.4 % of the scene and the mean temperature of the cloud is less than 295K 

(Irish 2000).        
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The procedure presented in Irish (2000) was followed using ENVI 4.6 image visualisation 

software to generate cloud masks so that a benchmark could be set to assess any increases in 

accuracy from adapting the thresholds (described in Sections 5.3.2 and 5.3.3). The optical 

bands 1 through 5 and 7 and the low gain thermal band 6.1 were converted to absolute 

radiance using Equation 5.1 (see Irish 1999):   

 

    
              

                
                         Equation 5.1 

 

Where; Lλ is the spectral radiance at the sensor in watts/metre2 * ster * µm; LMIN and LMAX 

are the spectral radiances for each band at digital numbers 0 or 1 and 255.  Thus, LMAXλ is the 

spectral radiance that is scaled to QCALMAX and LMINλ is he spectral radiance scaled to 

QCALMIN and both are in watts/metre2 * ster * µm and can be found in Irish (1999).  

QCALMAX is the maximum quantized calibrated pixel value in DN which is 255 and QCALMIN 

is the minimum quantized calibrated pixel value which is 0 for data processed before 2004.  

QCAL is the quantized calibrated pixel value in DN.   

 

Radiance converted optical bands were then converted to Unitless Planetary Reflectance using 

Equation 5.2 (Irish 1999):   

 

    
      

 

           
           Equation 5.2 

 

Where: ρp is the Unitless planetary reflectance; Lλ is the spectral radiance the sensors aperture 

calculated from the equation above in converting digital numbers to at sensor radiance section; 

d is the Earth-Sun distance in astronomical units based on the day of the year that the image 

was acquired; ESUNλ is the mean solar exo-atmospheric irradiances provided in Irish (1999); 

and θs is the solar zenith angle in degrees.   

 

One of the eight “pass-one” filters is a temperature threshold as clouds are generally much 

colder than land.  Irish (2000) used absolute temperature in Kelvin‟s where pixels under 300k 
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were seen as potential cloud.  The low gain thermal band 6.1 was converted from digital 

numbers (DN‟s) to radiance using Equation 5.1 (Irish, 1999).  Equation 5.3 converts radiance 

into absolute Kelvin values (Irish, 1999): 

 

   
  

    
  
  

   
          Equation 5.3 

 

Where: T is the at-satellite temperature in Kelvin, K2 is the calibration constant 2 (fixed at 

1282.71 watts/metre2 *ster* µm for Landsat 7), K1 is the calibration constant 1 (fixed at 666.09 

watts/metre2 *ster* µm for Landsat 7) and Lλ is the spectral radiance in watts per metre 

squared.  See the Landsat Science Users Handbook for more details Irish (1999).   

 

Potential cloud pixels were identified using the exact thresholds set out in Irish (2000).  An 

iterative process was used whereby; each ACCA filter threshold was used to create a region of 

interest (ROI), the ROIs were converted to binary masks and multiplied together with the binary 

masks from the other filters.  “Pass two” filtering was not conducted as the images did not meet 

the three criteria mentioned above and in Irish (2000).  Thus, the binary mask resulting from 

multiplying all ROI masks together was considered as the per-pixel cloud cover mask.   

 

5.3.2. Adapting the Automated Cloud Cover Assessment Algorithm for Pixel Based Cloud 

Filtering in Assam 

 

To standardise brightness differences between images acquired on different dates (Song et al. 

2001) atmospheric correction was performed using ATCOR-2: Atmospheric Correction for Flat 

Terrain to remove medium level haze and convert the 30 m multispectral bands from all images 

to ground-based reflectance units (Richter 2007).  The thermal band 6.1 was processed in 

exactly the same way as for the ACCA method in section 5.3.1.    

 

Using ENVI 4.6 six of the eight “pass one” filters from the ACCA algorithm were applied to the 

data.  Filter two and filter eight of the ACCA algorithm were excluded.  The ACCA filter two is a 

normalized snow difference index (NSDI) (Irish 2000) and this was excluded as no snow was 
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present in the scenes once spatial sub-setting had removed the surrounding mountains.  ACCA 

filter eight is a composite of ETM+ band 5 and thermal band 6.1 designed to separate identified 

clouds into hot and cold cloud categories and was excluded as splitting clouds by temperature 

was not required for this research.  Cloud filter parameters offered the greatest discrimination 

between thick and transparent cloud and non-cloud when filter threshold values were varied for 

each image (Table 5.2). 

 

Table 5.2 Thresholds used for the pixel based filtering of clouds 

Image ACCA 

filter 1 

ACCA 

filter 3 

(° K) 

ACCA 

filter 4 

ACCA 

filter 5 

ACCA 

filter 6 

ACCA 

filter 7 

Additional 

filter A 

Additional 

filter B 

L7134_041 Cloud 

> 3.25 

Cloud < 

296 

Cloud 

< -517 

Cloud 

< 5 

Cloud 

< 4.2 

Cloud 

< 4.18 

Cloud > 

2.5 

Cloud > 

7.75 

L7135_041 Cloud 

> 1.5 

Cloud < 

293.5 

Cloud 

< - 60 

Cloud 

< 10 

Cloud 

< 2.7 

Cloud 

> 1.5 

Cloud > 

1.75 
 

L7135_042 Cloud 

> 1 

Cloud < 

296.5 

Cloud 

< -69 

Cloud 

< 12 

Cloud 

< 2.6 

Cloud 

> 1.25 
  

L7136_041 
Cloud 

> 0.75 

Cloud < 

296 

Cloud 

< -

1100 

Cloud 

< 13 

Cloud 

< 3.7 

Cloud 

> 0.99 
  

L7136_042 Cloud 

> 5.5 

Cloud < 

297 

Cloud 

< 30 

Cloud 

< 1.5 

Cloud 

< 0.7 

Cloud 

> 1.1 
  

L7137_041 No Cloud 

 

In scenes where cirrus cloud was present the thresholds for filters 1-6 had to be extended well 

past the normal cloud levels (Table 5.2).  Therefore, to decrease the number of pixels identified 

as potential cloud two additional filters were developed (Table 5.2); i) Additional filter A and ii) 

additional filter B.  Additional filter A used ETM+ band seven brightness levels to distinguish 

areas of transparent cloud from wet bare land and urban areas.  Band seven brightness levels 

were used to distinguish areas of cirrus cloud from wet bare land or urban areas displaying 

similar spectral and temperature properties to clouds.  Band seven was selected as it is in the 

mid infra-red region and thus less affected by atmospheric scattering.  Thus it gave a clearer 

idea of areas that may have thin cirrus clouds. Additional filter B used Band two brightness 

levels to help further distinguish between areas of thin cirrus cloud and vegetation.  Band two 
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presents clear differences between dark vegetation and brighter cloud pixels.  The additional 

filters were employed in two images that had brighter overall pixel values due to increased 

levels of bare soil from agricultural harvests.  All filter threshold parameters adapted from the 

ACCA algorithm and the two extended filters are presented in Table 5.2.  Extending the ACCA 

thresholds was expected to decrease the omission errors relating to transparent clouds.  

However, it was also expected to introduce increased commission errors from pixels with similar 

properties to transparent clouds.  Therefore, object-based analysis was used to reduce these 

errors by „cleaning‟ the mask using spatial parameters to remove the pixels least likely to be 

clouds.     

 

5.3.2.1 Object-based Analysis for cloud mask “cleaning” 

The binary masks developed from spectral filtering described in Section 5.3.2 were input into 

eCognition Professional 5
15

.  The multi-segmentation tool was used to create two levels of 

image objects (Darwish et al. 2003).  Level-two segmentation had a scale factor of 10.  The 

shape criteria is constructed of two parameters; i) compactness, which optimizes for the 

compactness of the resulting objects where a perfectly compact object is a square and, ii) 

smoothness, which optimises for the smoothness of object borders.  The level-two 

segmentation had one class defined (potential cloud) and included all pixels with a value of one 

which were identified as potential cloud in the adapted pixel-based filters in section 5.3.2.  The 

potential cloud class in level-two segmentation was used as the parent class for further analysis 

in level-one segmentation.  Level-one segmentation was undertaken based on a scale factor of 

one.  The homogeneity criteria included 95% emphasis on spectral homogeneity and 5% on 

shape.   The shape parameter included 75% emphasis for compactness and 25% emphasis for 

smoothness. Within the level-one segmentation three child classes were created; large cloud, 

small cloud and non-cloud.   

 

Using the level-two segmentation all objects with a value of one were classified as potential 

cloud and used as a parent class for subsequent analysis on the image from level-one 

segmentation.   Objects from the level-one segmentation were classified as one of three child 
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 Definiens (2006) http://www.ecognition.com/products 
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classes; i) large cloud, ii) small cloud, iii) non-cloud.  The objects were defined solely using 

spatial definitions as summarised in Table 5.3.  The same three class descriptors were used for 

each image, but the spatial thresholds were optimized separately for each individual image as 

the size, thickness and brightness of clouds varied (Table 5.3).   

 



 

100 

Table 5.3 Class descriptions used for the object-based classification of clouds. 

 

Cloud Mask Input Level 2 Segmentation and 

Classification 

Level 1 Segmentation and class descriptions 

 Potential Cloud Large Cloud Small Cloud Non-Cloud 

L7134_041 Object mean value = 1 Area > 50,000 m2 Area 7,500 – 50,000 m2  OR 

Distance to large cloud < 1000 m 

Area <10,000 m2 AND 

Distance to large cloud > 1000 m2 

L7135_041 Object mean value = 1 Area > 100,000 m2 Area > 5,000 – 100,000 m OR 

Distance to large cloud < 1000 m 

Area < 5,000 m2 AND  

Distance to large cloud > 1000 m 

L7135_042 Object mean value = 1 Area > 150,000 m2 Area 4,000 – 150,000 m2 OR 

Distance to large cloud < 1000 m2 

 

Area < 4,000 m2 AND 

Distance to large cloud > 1000 m2 

L7136_041 Object mean value = 1 Area > 30,000 m2 Area 900 – 30,000 m2 AND 

Distance to large cloud < 1000 m2 

Area <30,000 m2 AND 

Distance to Large cloud > 1000 m2 

L7136_042 Object mean value = 1 Area > 15,000 m2 Area 1,800 – 15,000 m2 OR 

Distance to Large Cloud < 1000 m2 

Width < 60 metres 

L7137_041 No Cloud 
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5.3.3. Accuracy Assessment for cloud cover removal 

 

An ROI equating to an approximate 10% sample of the total clouds from the object-based cloud 

filters was created for each image.  Histogram stretching and visual interpretation was used to 

distinguish between transparent clouds and land covers. For each image an ROI of non-cloud 

pixels, approximately equal to the number of cloud pixels was also created.  The resulting ROIs 

were used to create a sample image with three classes; cloud samples, non-cloud samples and 

remaining pixels.  Error images were created by summing the sample image with the output 

masks from the ACCA filtering, the pixel-based filtering and object-based classification.  

 

Confusion matrices and Cohen‟s Kappa coefficient (Congalton 1991; Foody 2002; Rosenfield 

and Fitzpatrick-Lins 1986) were calculated from the error images for each of the three methods 

and reported in error matrices.  An error matrix allows the comparison on a category-by-

category basis of the relationship between training data which are known and the predicted data 

resulting from the classification.  The matrices highlight the errors of omission, where an object 

is selected as belonging to a class in the sample data but has been missed by the classification 

and errors of commission (where an object is classified as a different class to the one it is 

selected as in the sample data).  The overall accuracy is calculated by dividing the total number 

of correctly classified pixels with the total number of pixels in the training data.  Producer 

accuracy  are defined as the number of pixels classified correctly in each class divided by the 

number of pixels used in the training data for that class.  The producer accuracy shows how well 

the training data of a given class have been classified.  The user accuracy is defined as the 

number of pixels classified correctly for each class divided by the total number of pixels 

classified in the category (Lillesand et al. 2004).  

 

The Khat statistic results from calculating the Kappa Coefficient and it is a measure of the 

difference between the agreement between sample data and classified data and the chance 

agreement between the sample data and a random classifier (Lillesand et al. 2004).  The Khat 

statistic for this research was calculated using Equation 5.4 which was taken from Congalton 

(1991) and Lillesand et al. (2004): 
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         Equation 5.4 

 

Where: r is the number of rows in the error matrix; xii is the number of observations in row i and 

column i (on the major diagonal); xi+ is the total of observations in row i (marginal total to the 

right of the matrix); x+i is the total observations in column i and N is the total number of 

observations included in the matrix.  Thus, taking the object-based cloud classification image for 

WRS path/row 135/042 as an example, where the error matrix is shown in Table 5.4. 

 

Table 5.4 Example error matrix for WRS path/row 135/042. 

Image 5 Object-based Mask Cloud Non-cloud Total 

Cloud 38671 1 38672 

Non-cloud 13379 51378 64757 

Total 52050 51379 103429 

 

From the error matrix for example image (WRS path/row 135/042) the Khat statistic was 

calculated using: 

 

))51379*64757()52050*38672(()2^103429((

))51379*64757()52050*38672(()5137838671(103429




K

  Equation 5.5 

 

Once the cloud cover had been identified and removed from each image and accuracy 

assessments conducted the cloud free imagery was then passed to the land cover classification 

procedure outlined below. 

 

5.4. Land cover classification 

 

Object-based land cover classification was conducted using eCognition Professional 5.5.  Nine 

classes were identified, covering both land uses and land classes, based on knowledge from 

field work observations (Chapter 4) and relationships between census and environment 
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identified in the literature (Chapter 2).  The classification procedure followed the guidelines for 

30 m spatial resolution satellite sensor data set out in Anderson et al. (1976) and subsequently 

modified by the USGS for the United States National Land Cover dataset (Vogelmann et al. 

2001; Jones et al. 2009) and used by Homer et al. (2004).  Therefore, based on the above 

literature, the criteria followed for remote sensing classification included the following focus 

points: 

 

 Minimum level of accuracy of 85%; 

 Repeatable results needed; 

 Applicable over extensive areas, and; 

 Classification should allow land cover types to be used as a proxy for activities (land 

uses). 

 

Classes identified were; bare, built up, grass, plantation, summer crop, water, wetland, winter 

crop and woodland.  Landsat ETM+ images acquired prior to the main harvest time of October 

or November during the winter period during January were used to distinguish between winter 

crop and bare land.  

 

Segmentation of the images produced homogeneous objects for classification using a scale 

parameter of 8 (which determines the size of the resulting objects). The homogeneity criteria 

included 90% emphasis on spectral homogeneity and 10% on shape (compactness and 

smoothness), and 50% for both compactness (optimises for the compactness of resulting 

objects; a perfectly compact object is a square) and smoothness (optimises for the smoothness 

of object borders).  As recommended by Baatz et al. (2000) the segmentation criteria were 

based on experimentation with parameters to achieve objects with the desired size, 

homogeneity and shape for the application.  The ETM+ band 1 in both the October and January 

data sets were weighted as zero in the segmentation process.  Band 1 on the ETM+ sensor 

covers the blue portion of the electromagnetic spectrum and is subject to several problems 

relating to atmospheric contamination.  Tasselled cap transformation wetness and greenness 

indices (Lillesand et al. 2004) were derived from October images in ENVI prior to segmentation 
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and used in the segmentation and classification process to assist in identifying wet pixels, and 

different types of vegetation.  Bands two to five and seven of both the October and January 

images and the Tasselled cap wetness band were given a weighting value of one to ensure all 

were treated equally in the segmentation process.  Each image was segmented using the same 

criteria.  However, image WRS path/row 136/042 had to be split into two as the image was too 

large to be segmented and classified as one.  

 

The classification procedure used for each of the land cover classes is detailed in Table 5.5.  

The nearest neighbour classifier was applied to six of the nine land cover classes and used a 

minimum membership of 0.5.  Minimum membership was calculated using samples for each 

land cover class that were collected after segmentation.  Spectral features used for nearest 

neighbour classification were, mean and standard deviation measures of the spectral values of 

bands two to five  and seven in the October and January images and the mean and the 

standard deviation of the wetness and greenness bands from the Tasselled cap transformation 

for both October and January images.  The customized features builder, in eCognition 5.5, was 

used to create Normalized Difference Vegetation Index (NDVI) for each object in both October 

and January images and these were used in the nearest neighbour definition along with the 

change in NDVI between October and January.  Spatial features used in the nearest neighbour 

classifier included, object area, object length divided by object width, and object asymmetry.   

 

Table 5.5 Class descriptions used for the object-based land cover classification. 

Class Definition Image number 

Bare NN with samples All 

Grassland NN with samples All 

Built Up Manual All 

Summer crop NN with samples All 

Winter crop NN with samples All 

Water Class description All 

Woodland NN with samples All 

Wetland Manual All 

Plantation NN with samples.  Area over specific threshold. All 

 



Gary R. Watmough  Remote Sensing 

105 

Areas of plantation in Assam are easy to identify visually through constant year round spatial 

and textural properties.  Segmentation did not result in single plantation objects as they were 

spectrally very similar to the surrounding woodland and summer cropland.  Therefore, prior to 

running the nearest neighbour classifier plantation objects were manually merged to form larger 

homogenous plantation objects.  This meant that plantation could be identified using the 

samples and nearest neighbour classification with the addition of a class descriptor (minimum 

object size).  The size of plantation objects varied for each Landsat image and the definitions 

used for each image are summarised in Table 5.6.  The manual creation of large objects helped 

to distinguish plantation from other vegetation classes such as woodland that had small NDVI 

changes between October and January and similar spectral properties.  

 

Table 5.6 Object area used to help classify plantation land. 

Image Number Area Threshold (square metres) 

1 L134/041 > 500,000 

2 135/041 > 500,000 

3 135/042 > 500,000 

4 136/041 > 500,000 

5 136/042 Right > 750,000 

6 136/042 Left > 750,000 

 

In each image, a sample group of water was collected and summary statistics calculated which 

included: 

 

 Mean October/November Band 5 and 7 value;  

 Mean Tasselled Cap wetness, and; 

 Mean NDVI for January.  

 

These summary statistics provided a generalisation of water objects to be used to define the 

water class.  Four class descriptors were used and these are presented in Table 5.7.  Since 

class descriptors were used for water objects any object with water present was classified as 
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water.  Wetland therefore had to be classified using manual editing instead of class descriptors 

or nearest neighbour classification. 

 

Table 5.7 Object definitions used for classifying water 

Image Number Mean Oct B5 Mean Oct B7 Mean TC 

Wetness 

NDVI Low 

1 10 – 50 9 – 40 -15 - 33 -1 – 0.4 

2 <9 0 – 5 -6 – 7 -1 – 0.5 

3 <10 0 – 7 -6 – 20 -1 – 0.4 

4 0 – 16.2 0 – 10.48 -9 - 20 -1 – 0.5 

5 Right and Left <12 0 – 10.48 -7.3 – 20 -1 – 0.4 

6  0- 4.2 0 – 2 -0.15 – 20 -1 – 0.4 

 

There were very few built up areas identifiable in the Landsat ETM+ imagery across the study 

region.  Built-up areas had woodland, water, bare land and agricultural land within them which 

meant that the variance in the size and spectral properties of built-up objects were considerable.  

Thus, it was not possible to use nearest neighbour classification processes without having large 

numbers of bare land or shallow water objects wrongly classified as built up land.  Therefore, 

built-up objects were manually classified once the nearest neighbour classification had been 

run.   

 

GPS points representing specific land cover classes were collected during the field work and 

overlaid onto Google Earth imagery to identify how land cover classes looked in 2009.  These 

classes were compared to Landsat imagery from 2001 to visually identify the land cover 

classes.  Samples of these land cover classes were selected within the eCognition software to 

act as validation data for use in accuracy assessments.  The areas where cloud had been 

masked were coded as no data and not used in the accuracy assessments.  

 

5.4.1. Replacing the cloud removed objects with land cover data 

 

Once the classification was complete all Landsat ETM+ images were mosaiced in ENVI 4.6 to 

form one raster data set for the study area.  The „Expand‟ function in the Spatial Analyst tool box 
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of ArcMap 9.3 was used to fill in the gaps left by the cloud removal procedure.  The „Expand‟ 

function expands selected values of a raster by a specified number of cells (ESRI 2009b).  The 

pixels where cloud had been removed had values of zero and were specified as background 

zones, the nine land cover classes were specified as foreground zones.  The „Expand‟ function 

allows the foreground zones to expand into the background zones based on the value of the 

neighbouring cells.  If there is more than one value that could be expanded into a background 

zone the function bases the expansion on the value of the majority of the surrounding cells.   

 

 

5.5 Results  

 

The results have been split into two sections (i) cloud cover removal and (ii) land cover 

classification.  The full list of confusion matrices showing the differences between the ACCA 

mask and the extended ACCA mask are presented in Appendix 3a.  Appendix 3b gives the full 

error matrices for the land cover classifications.   

 

5.5.1 Cloud cover identification and removal 

 

The confusion matrices (Appendix 3a) show increases in the numbers of cloud pixels identified 

from the ACCA mask to the pixel-based extended mask. As a result, the overall accuracies 

increased from 58.89% to 78.09%, 89.1% to 90.73%, 70.10% to 92.55%, 74.76% to 85.21%, 

65.99% to 86.97% and 78.53 to 82.11% for images one to six respectively.  Further, overall 

Kappa coefficients increased from 0.1625 to 0.5574, 0.7834 to 0.8156, 0.4066 to 0.8510, 

0.4985 to 0.7043, 0.3203 to 0.7397 and 0.202 to 0.6531 for images one to six respectively.  

Error matrices are shown in Appendix 3a and total accuracy for the object-based cloud 

classification images are summarised in Table 5.8.  
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Table 5.8 Overall accuracy for each classified image using samples 

Scene Accuracy 

L7134_041 82.12 % 

L7135_041 94.55 % 

L7135_042 94.94 % 

L7136_041 88.87 % 

L7136_042 87.06 % 

L7137_041 86.69 % 

 

The object-based classification procedure reduced the commission errors from the extended 

cloud mask by 5.47% and 8.72% in images three and four respectively.  However, commission 

errors increased by 5.27%, 0.10% and 1.95% in images one, two and six respectively (Table 

5.9).  Manual editing was used to assign any unclassified objects to a class which reduced 

omission errors by 13.74%, 7.45% and 9.02% (Table 5.10) in images one, two and six 

respectively from the extended mask to the object-based mask.  However, manual editing 

increased omission errors by 0.63%, 1.67% and 0.19% in images three, four and five 

respectively.  Despite mixed results with regard to the omission and commission errors between 

the extended mask and the object-based mask, overall accuracies (Table 5.8) increased from 

78.09% to 82.12%, 90.73% to 94.55%, 92.55% to 94.94%, 85.21% to 88.87%, 86.97% to 

87.06% and 82.11% to 86.70% for images one to six respectively.  Kappa coefficients increased 

from 0.5574 to 0.6403, 0.8156 to 0.8913, 0.8510 to 0.8988, 0.7043 to 0.7779, 0.7397 to 0.7417 

and 0.6531 to 0.736 for images one to six respectively. 

 

Table 5.9 Commission errors for the cloud removal techniques 

 

 ACCA Filter Extended Filter  Object-based mask 

Image 1 0% 0.38% 5.65% 

Image 2 0.04% 0.38% 0.48% 

Image 3 0% 9.16% 3.69% 

Image 4 0.05% 12.40% 3.26% 

Image 5 28.49% 0.4% 0.0% 

Image 6 5.6% 0.09% 2.04% 
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Table 5.10 Omission errors for the cloud removal techniques 

 

 ACCA Filter Extended Filter  Object-based mask 

Image 1 84.04% 44.40% 30.66% 

Image 2 20.97% 17.50% 10.05% 

Image 3 59.03% 5.77% 6.40% 

Image 4 49.75% 17.11% 18.78% 

Image 5 39.46% 25.51% 25.7% 

Image 6 32.25% 29.99% 20.97% 

 

On average the percentage decrease in omission errors from ACCA filter to object-based 

masking was 35.08% and can be visualised in Figure 5.1 where the ACCA mask failed to 

identify the transparent parts of clouds.  Image three, four and six had slight increases in 

omission errors from the extended mask to the object-based mask which was expected and is 

discussed in section 5.6.  As expected commission errors increased from negligible values in 

the ACCA masks to larger values in the object-based mask (Table 5.9).  However, object-based 

mask reduced commission errors from that of the extended mask in two images.     
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Figure 5.1 Outline of the cloud identified by the ACCA mask (blue) and that identified by the 

object-based mask (red) overlaid onto an RGB false colour composite of Landsat ETM+. 

 

Image one was problematic for all cloud masking methods all cloud masking methods had 

higher omission levels for this image.  This may be related to the lack of clouds in the image 

with just 0.19% reported in the image metadata.  Images are classified as cloud free if the 
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ACCA filter reveals that less than 0.4% of the image is covered in cold cloud (Irish 2000).  The 

majority of visible clouds were small transparent clouds which is probably why the ACCA filter 

reported such low cloud coverage.  The clouds were difficult to identify computationally or 

visually against the relatively bright background due to a large amount of bare agricultural land, 

sand bars and banks and lower amounts of dense forest and vegetation.     

 

Overall accuracy and Cohen‟s Kappa coefficients increased significantly for all four images from 

the ACCA mask to the object-based masks (Table 5.4).  There were significant increases in 

overall accuracies and Kappa coefficients between the basic ACCA mask and the extended 

mask before object-based mask for images one, three and four.  More modest increases in 

overall accuracy were seen between the extended thresholds mask and the object-based mask.  

However, in all four images there were large increases in the Kappa coefficients between the 

extended filter mask and object-based mask.   

 

5.5.2 Land cover classification 

 

The error matrices for all classified images can be found in Appendix 3b and the overall 

accuracy percentages for each image are summarised in Table 5.11.  Overall accuracy ranged 

from 93.61% for image 135/041 (WRS Path/Row) to 98.62% for image 137/041 (WRS path/row) 

which are all above the 85% threshold advised by Anderson et al. (1976). 

 

 

Table 5.11 Overall accuracy for each Land cover classification 

Scene WRS Path/Row Accuracy 

134/041 95.82 

135/041 93.61 

135/042 98  

136/041 96.37 

136/042_Left 97.14 

136/042_Right 97.05 

137/041 98.62 

 



Gary R. Watmough  Remote Sensing 

112 

Figure 5.2 shows the land cover classification for the entire research area in Assam.  Figure 5.3 

is a zoomed in image of part of the land cover classification where cloud was replaced with land 

cover data from the surrounding area using the expand function in ArcMap 9.3.  On the whole 

the expand function appeared to work satisfactorily.  No analysis was conducted on the 

accuracy of the expand method but it can be seen that when there are few land cover classes 

the resulting imagery appeared adequate.  

 

Omission and commission errors were low for all classes apart from wetland and plantation.  

There was some omission of wetland objects and woodland, summer cropland and water.  The 

wetland objects often fringed areas of water and were initially classified as water from the class 

descriptors.  The manual editing phase then re-classified those objects that were felt to be 

wetland.  Thus, there was large scope for human error in missing wetland objects.  Furthermore, 

wetland also had similar spectral and spatial properties to woodland objects either under cloud 

shadow or within steep valleys. Very wet summer cropland also had similar properties to 

wetland objects.  This meant that manually classifying wetland was expected to be limited.   

 

The confusion between plantation and woodland was consigned to areas where woodland 

infringed on plantation and had large objects from the segmentation or where plantation objects 

had been missed when manually merging objects.  This resulted in plantation objects not 

meeting the minimum object size criteria and instead being classified as woodland as the 

spectral properties were similar.   
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Figure 5.2 Land cover classification map for study area. 
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Figure 5.3 the effect of the 'expand' function for expanding surrounding land into the areas of cloud (outlined in red).
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5.6 Discussion 

 

Overall land cover classification procedure was able to provide nine land cover classes that 

were deemed important for subsequent statistical analysis with census variables and is 

discussed in greater detail in Section 5.6.2.  The cloud cover identification and removal 

appeared to provide more accurate masking of transparent clouds and this is discussed further 

in Section 5.6.1. 

 

5.6.1 Cloud cover identification and removal 

 

The image-based technique to remove transparent clouds from individual images developed 

here used existing tool sets in widely available software packages.  Kappa coefficients and 

overall accuracies increased for all images from the ACCA mask to the object-based mask.  

Overall accuracies for five of the six images were above the 85% threshold stated by Anderson 

et al. (1976).  Omission errors were reduced substantially from the ACCA mask to the object-

based mask for all images.  Although, as expected, commission errors increased slightly from 

almost zero in the ACCA masks to between 0.5% and 5.65% in the object-based mask.   

 

Omission and commission errors are important considerations for operational methods as they 

can lead to inaccuracies in the subsequent use of imagery for land cover classifications.  

Omission errors in images three, four and five were found to increase slightly from the extended 

mask to the object-based mask.  This is a result of the definitions used in object-based 

classification.  If small clouds existed in the imagery and were over a specific distance away 

from large clouds they would have been classified as non-cloud.  These slight increases in 

omission errors were countered by much larger decreases in commission errors in both images.   

 

Altering the ACCA filters can increase the commission errors in binary cloud masks.  In an 

operational setting this may decrease the number of pixels available for land cover 

classifications.  The object-based classification of cloud masks was designed to avoid masking 

large areas of non-cloud.  Figure 5.4 show that it was relatively accurate in removing non-cloud 

objects whilst maintaining the majority of cloud objects.  Commission errors increased 



Gary R. Watmough  Remote Sensing 

116 

significantly in image one possibly due to brighter background pixels leading to erroneous 

classification of non-cloud objects during manual editing.   

Figure 5.4 The object-based classification "cleaning" process.  The extended cloud mask 

resulted in large amounts of commission errors.  Using the object-based mask removed large 

amounts of non-cloud pixels from the mask.  Grey coloured objects with a red outline were 

classified as cloud and those with no outline classified as non-cloud.  
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Problems may occur if ACCA filter thresholds are extended too far.  The cloud cover mask may 

incur increased commission errors.  If non-cloud pixels are adjacent to one another they will 

result in larger objects being created during object-based image segmentation.  This will make it 

more difficult to distinguish between cloud and non-cloud using the current spatial class 

definitions.  Therefore, future research may focus on performing object-based classifications on 

the multispectral imagery and using spectral and spatial definitions rather than using spatial 

definitions on a binary mask.   

 

5.6.1.2. Limitations of the cloud cover identification and removal method 

Prior to analysis it was hoped that one set of threshold extensions and object-based definitions 

would be sufficient to identify and remove transparent clouds from all five images.  Histogram 

matching was attempted in ENVI mosaic tools prior to analysis.  However, the spectral 

responses for specific land covers were not uniform, possibly due to the different dates of 

images and the time of year of acquisition coinciding with the start of rice harvests.  The failure 

of histogram matching may be explained by Wen et al. (2001) who found that clouds and 

distance to clouds can lead to under predictions of surface reflectance.  Therefore, differences 

in illumination between scenes remained and thresholds had to be adapted for individual 

images.  This image-specific approach is not ideal, as it is more difficult to fully automate. 

However, the method was developed on a pragmatic basis in an operational environment that 

required specific images to be used in subsequent research.  Accuracy assessment results 

show that it offered significant increases in accuracy in identifying and masking cloud and visible 

transparent clouds.   

 

It was difficult to assess fully the accuracy of methods to identify transparent cloud.  Image 

enhancement tools available in the software were used to help distinguish between transparent 

cloud and underlying land.  However, any optically thin clouds in the scene that cannot be seen 

by the user are likely to have been left unmasked.  This cannot be avoided as it is related to the 

spectral resolution of the Landsat ETM+ sensor.  However, sharpening the multispectral 

imagery using the panchromatic band may help to further enhance the identification of cloud 

edges (Irish et al. 2006).   
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Image fusion techniques similar to those used by Helmer and Reufenacht (2005) to replace the 

masked areas with the correct land cover information were not attempted here.  Extensive cloud 

coverage related to the monsoon meant a lack of available scenes immediately before those 

used, and images immediately after those acquired in October had very different spectral 

properties due to the harvest.  Therefore, errors were likely in fusion techniques from 

differences in agricultural vegetation seasons which affect vegetation and soil phenology.   

 

Future research could integrate shadow removal into the technique applied here by using 

geometric relationships between clouds and their shadows and brightness values as described 

in Martinuzzi et al. (2007).  Further, a comparative study could compare the accuracies of the 

method developed here with other cloud masking methods highlighted in Section 5.2 to identify 

the most comprehensive cloud identification technique (although results may vary depending on 

the local conditions in the images used).     

 

5.6.2 Land cover classification 

 

The spatial and spectral parameters used in the nearest neighbour classifier were the same for 

all the images but the parameter thresholds were varied.  The class descriptors used to define 

water and to support the nearest neighbour classifier of plantation were varied in each image to 

ensure greater accuracy.  This approach was time consuming and would be problematic for 

extensive areas of research (Pax-Lenney et al. 2001) as the methods were not entirely 

repeatable or applicable over extensive areas (Anderson et al. 1976).  However, this method 

ensured that the differing spectral and spatial parameters inherent in the images did not cause 

increased errors to result from generalising the classification process.   

 

Creating an image stack for the classification which incorporated images from two distinct time 

periods during the agricultural calendar with NDVI and Tasselled Cap Transformation products 

meant that it was possible to distinguish between classes that would otherwise have been 

classified as a single land cover.  For example, in the October/November images winter crop 

often lacked any vegetation cover.  Thus, it had very similar spectral characteristics with bare 

land.  Adding in images from January increased the distinction between winter cropland and 



Gary R. Watmough  Remote Sensing 

119 

bare land classes through the use of spectral change detection in the multispectral bands and 

NDVI images.   

 

A problem using images from two distinct time periods in an area affected by monsoon rain 

were the very large differences between the amounts of water in the river channels in October 

compared to January.  Segmenting the images using the TC wetness band derived from the 

October image and not January meant that the extent of the water could be used to define the 

object boundaries.  However, this means that the water class is only representative during 

October and may not have any similarity with the amount of water present at other times of the 

year.    

 

No differences in spatial or spectral parameters could be found between the woodland and 

plantation classes.  Thus, the manual object merge tool had to be used to increase the size of 

the plantation objects, which were very distinct visually from other classes.  Some woodland 

objects were larger than the minimum plantation object area and therefore these errors had to 

be rectified using the manual editing tool.   

 

5.6.2.1. Limitations of land cover classification 

The 30 m spatial resolution of Landsat ETM+ data meant roads could not be identified in the 

classification.  Pan-sharpening tools could be used in the future to create a data set with an 

effective spatial resolution of 15 m which may enable some of the larger roads within Assam to 

be detected by an automated classification process. A further problem resulting from the spatial 

resolution of Landsat ETM+ was that small ad-hoc agricultural areas on river banks and island 

could have been missed due to average field sizes often being lower than 30 by 30 metres.   

 

Small settlements cannot be identified using 30 m resolution imagery.  Henderson and Xia 

(1997) discussed the use of Synthetic Aperture Radar (SAR) for identifying human settlements 

and Tatem et al. (2004) found that “...the combination of medium spatial resolution multispectral 

satellite imagery [Landsat TM] with similar scale SAR imagery and derived texture layer [was] 

effective in identifying and mapping settlements at medium-scale resolution across the diverse 
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landscapes of Kenya” (Tatem et al. 2004, p.49).  This may be a method to explore further in the 

future as it could add provide vital information relating to the location of human settlements.  

 

The accuracy assessment conducted for land cover classification relied upon samples selected 

from within the images.  Some of the images had very few objects belonging to the plantation, 

wetland or built up classes.  Therefore, the number of samples available was often low which 

could potentially distort the overall accuracy estimates.  A more detailed accuracy assessment 

would require the collection of ground data from around the time of the satellite data acquisition 

which was not possible here due to the use of historical data.   

 

The winter cropland class was identified as an important environmental parameter during field 

observations.  However, the number of crops harvested per year is much more complicated 

than just summer and a winter crop in Assam.  Crops are planted depending on the rainfall and 

when rainfall is late this can delay the planting of the second crop (termed winter cropland in this 

research).  This means that there is a strong likelihood that only using images from two periods 

during the agricultural calendar may result in some areas that grow second or third crops being 

missed.    

 

The „Expand‟ function was used as an efficient way of replacing land that was masked by cloud.  

In the future image compositing or geostatistical methods such as Kriging could be used to 

identify the most likely land cover under a cloud.  However, problems may be encountered if 

substantial land cover changes occur between composited images, such as large scale flooding 

or land erosion, or if substantial cloud cover persists.   

 

5.7 Conclusion 

 

The ACCA algorithm was designed to provide fast automated assessments of cloud cover in 

Landsat ETM+ images to aid wider USGS mission aims for data acquisition.  This research 

suggests that the ACCA method can be used in operational settings as the basis for a 

supervised step-by-step approach to extend the thresholds to identify and mask transparent 

cloud pixels.  Object-based analysis principles can then be used to minimise the inevitable 
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commission errors emanating from visually extending the thresholds, thus, preserving more 

pixels for subsequent analysis and reducing potential inaccuracies in future land cover 

classifications.   

 

Initial research attempted to find optimised filter threshold ranges that included transparent 

clouds in all images.  However, it was found that cloud properties varied in each image.  

Therefore, filter threshold parameters for individual images were altered to ensure the highest 

possible overall accuracy for identification of thick cloud and transparent cloud whilst minimising 

commission errors. 

 

Overall, omission errors were much smaller in the object-based mask than the ACCA mask 

meaning that subsequent land cover classifications will be more reliable with less inaccuracies 

associated with cloud that has been inadvertently excluded from the mask.  Commission levels 

increased slightly from the ACCA filter to the „cleaned‟ mask.  However, the process of 

extending the ACCA filters, which were optimised using global data sets, is expected to include 

increased numbers of non-clouds.  The object-based classification helped to reduce 

commission errors in two of the four images and there was little change in a third image. 

 

The adapted cloud cover identification and masking procedure produced a set of images for 

land cover classification with greater reduced amounts of cloud within them.  This meant that it 

was easier to identify and classify land cover classes accurately that were thought to have 

important associations with poverty and development.  Had the cloud removal procedure not 

been conducted certain land cover classes with spectral and spatial properties similar to 

transparent cloud would have been less accurate.  These inaccuracies may have had the effect 

of causing bias into the subsequent statistical analyses as there would have been increased 

amounts of bare land within the database that was not actually bare land.   

 

Overall, the cloud cover removal algorithms provided a database in which to derive 

environmental metrics for subsequent analysis more accurately which would also then lead to 

increased confidence in the subsequent statistical analysis results. 
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