Climate Warming and Natural Rubber Productivity

James Jacob, P. R. Satheesh and D. Ray

Rubber Research Institute of India, Kottayam, Kerala james@rubberboard.org.in

KEC 2012 16-18 August 2012 Trivandrum

Session Outline

- 1. Introduction
- 2. Has climate changed in the NR belt in the country?
- 3. How did these changes impact NR productivity in the past?
- 4. What is in store for future?
- 5. Geo-informatics and Ecological Niche Modeling
- 6. Are trees the answer to global warming?

1. Introduction

$Profit = f(\downarrow COP, \uparrow Market Price)$ $\downarrow COP = \frac{\downarrow Cost}{\uparrow Productivity}$

2. Has climate changed in the NR producing regions?

Frequency of warm nights (>24.3 °C) has increased in Kottayam between 1956 and 2007

RRII Annual Rainfall (1971-2008)

Deviation in Rainfall (mm)

RRII June Rainfall (1970-2009)

Deviation in Rainfall (mm)

In RRII campus at Kottayam, during the last 50 years:

Tmax. increased by 2.6 °C

Tmin. increased by 1.5 °C

Annual rainfall decreased by 375 mm

Long term temperature trends

STATION	PERIOD	TEMPERATURE	MEAN	RATE/YEAR	
TURA	1005 2009	Tmax	29.3	0.15	
(Meghalaya)	1990-2000	Tmin	16.9	0.05	
AGARTHALA	1001 2007	Tmax 30.6 0.0			
(Tripura)	1984-2007	Tmin	19.9	0.06	
PADIYOOR (Kannur, Kerala)	1998-2009	Tmax	32.8	0.01	
		Tmin	21.8	0.11	
DAPCHARI	1096 2000	Tmax	33.2	0.08	
(Thane, Maha.)	1900-2009	Tmin	20.6	0.03	
KOTTAYAM	1056 2000	Tmax	31.2	0.05	
(Kerala)	1900-2009	Tmin	22.7	0.03	

3. How did these changes impact NR productivity in the past?

y = f (weather variables)

- Mean annual yield was estimated as the average g/t/t for 3-13 years from 10 locations in different agroclimatic regions and used as the y variable.
- Mean weather data, estimated from long term meteorological data (10-53 years) for these different locations were used as independent variables (x).
- The different independent variables were:
 - 1. Mean Annual temperature (Tann.)
 - 2. Mean Annual maximum temperature (Tmax)
 - 3. Mean Annual minimum temperature (Tmin)
 - 4. Mean annual rainfall (RF)
 - 5. Mean number of annual rainy days (RFday)

Backward Multiple Linear Regression (MLR) was done ((SPSS-Statistical Package for the Social Sciences (now **PASW-Predictive Analytics SoftWare**) using g/t/t as the y-variable and the five x-variables (Tann, Tmax, Tmin, **RF and RFday**)

The MLR models obtained for the individual regions for all clones together

Y= 433.43 - 7.87Tmax - 4.83Tmin (CES)

Y=171.01 - 2.54 Tmax - 1.71Tmin (Padiyoor)

Y=204.98 - 1.01Tmax - 5.51Tmin (Dapchari)

Y= 41.25 + 0.67Tmax - 1.13Tmin (Agarthala)

Y=-24.85 + 3.58Tmax - 2.59Tmin (Tura)

			MLR		% Change	% Change (for next 10 year)	g/t/t	
		Coeff.	Intercept	R ²	(for 1ºC rise)			
тира	2002.08	Тx	3.58	04 9E	0.23	2.72	11.25	35.8
IURA	2003-00	Tn	-2.60	-24.00				
AGARTHALA 2003-08	Tx	0.67	11.25	0.07	-1.17	-1.10	37.9	
	Tn	-1.13	41.25					
PADIYOOR 2007-08	Tx	-2.54	171.01	0.19	-8.72	-4.23	48.6	
	Tn	-1.71	171.01					
DAPCHARI 2007-08	Тх	-1.01	004.00	0.50	44.05	0.70	67 7	
	2007-08	Tn	-5.51	204.98	0.50	-11.25	-3.70	57.7
CES 2003-08	0000.00	Tx	-7.87	400.40	0.29	-16.23		70.0
	2003-08	Tn	-4.83	433.43			-6.90	/3.0

Field Productivity (Kg/ha/yr)

YEARS AND CLONES			MLR		% Change	y/ha (kg)	
		Coeff.	Intercept	R ²	(for 1ºC rise)		
Kottayam 2008-09	2008.00	Тх	-6.14	999.53	0.24	-18.83	1965
	2000-09	Tn	-27.68				
Thaliparamba 2008-09	2008.00	Tx	6.14	-7.30	0.12	-4.15	1050
	2000-09	Tn	-1.37				1920
Kanjirapally 20	2008-09	Tx	-11.33	789.36	0.25	-15.06	4002
		Tn	-12.68				1902

Productivity of RRII 105 (g/t/t) decreased over time under experimental conditions

1980s	Present	
>55 to 60	<55	

4. What is in store for future?

Future trends in NR productivity

STATION	% Change in next decade	RATE/YEAR (degrees C/Year)
TURA	11 2	0.15
(Meghalaya)	11.0	0.05
AGARTHALA	1 1	0.02
(Tripura)	-1.1	0.06
PADIYOOR	4.0	0.01
(Kannur, Kerala)	-4.2	0.11
DAPCHARI	27	0.08
(Thane, Maha.)	-3.7	0.03
KOTTAYAM	6.0	0.05
(Kerala)	-0.9	0.03

 In the next ten years, NR productivity in India can go down by 5.6% in the traditional regions and by 3.7% in the dry and hot non-traditional regions as a result of warming conditions.

• But in the NE region, which is also a nontraditional region, productivity may go up in the next decade.

NR in NE India 2012 (Maxent model)

NR in NE India 2050 (Maxnet model)

Present NR distribution In South India.

South Kerala appears to be better niche for NR in South India (Mexent model)

NR Distribution in Brazil

Sierra Leone

Cameroon

5. Geo-informatics and Ecological Niche Modeling

IRS P6 Satellite image of Kerala

Established GIS facility to map rubber distribution for traditional area using remote sensing and bring in all the information related to rubber for meaningful analysis, visualization and interpretation. Red colour indicates all vegetation

Comparison of satellite based rubber area with ground statistics

District	Ground survey statistics (ha) (2005 - 06)	Satellite based rubber area (ha)	Variation Compared to ground survey statistics (%)	% of geographical area under rubber
Thiruvanathapuram	30 009	27 527.23	-8.27	12.61
Kollam	35 665	37 271.97	4.50	14.96
Pathanamthitta	49 551	51 766.25	4.47	20.54
Alapuzha	3 934	5 770.57	46.68	3.74
Kottayam	1 11 635	1 06 793.22	-4.33	48.19
Idukki	38 844	37 103.46	-4.48	7.39
Ernakulam	58 309	56 654.19	-1.10	23.58
Trissur	14 058	13 927.41	-0.92	4.59
Palakkad	31 952	28 420.82	-11.05	6.33
Malappuram	32 588	36 633.61	12.41	10.30
Kozhikkode	18 237	18 751.59	2.821	7.96
Wyanad	7 777	8 976.98	15.42	4.21
Kannur	38 366	49 477.40	28.96	16.74
Kasargod	25 374	20 052.69	-20.97	10.08
Kanniyakumari	18 225	20 781.71	14.02	12.36
Total	5 14 524	5 19 909.10	1.04	12.28

6. Are trees the answer to global warming?

CO₂ sequestration potential of five years old plants calculated from Eddy Covariance System

3350 gm/m²/year = 33.5 ton CO_2 /ha/year

Taking a modest rate of 25 T CO_2 / ha / year, world's 10.5 m ha of natural rubber plantations help to offset the current rate of build up of CO_2 in the atmosphere to the tune of 1.6%.

Natural rubber provide invaluable ecosystem services to humanity that should not go unappreciated. NR plantations in India sequester about 20 million ton CO_2 every year which is roughly 1.3% of the annual emissions from fossil fuels in the country!

.

<u>]</u>]

(Gt C/yr)	1980s	1990s	2000-2005
Emission	5.4	6.4	7.2
Ocean fixation	1.8	2.2	2.2
Land fixation	0.3	1.0	0.9
Net addition to atmosphere	3.3	3.2	4.1

Total terrestrial vegetation area: 15000 m ha Current fixation : 3303 m MT CO2 Fixation rate: 220 x 10^{-9} m MT CO2/ha/yr Net addition to atmosphere: 10151 m MT CO2 Required (additional) rate to offset this: 3.07 T CO/ha/yr (0.9 +3.07= 3.97 T CO2/ha/yr) At the present rate of emission and rate of fixation by terrestrial vegetation, we need an additional land area of around 46141.0 m ha for planting trees so as to fully offset the current rate of increase in atmospheric CO2 concentration (1.30 ppm per year).

• This is equal to the terrestrial vegetation area of three planets.

Even if we take the sequestration capacity of the land and ocean together, we will still require one more additional planet to keep the atmospheric CO2 concentration stabilized at the present level.

 Further rise in concentration can be avoided by deliberate reduction in the amount of anthropogenic CO2 emission into the atmosphere and not by increasing sequestration alone.

Emission

Removal

In conclusion:

Warming conditions seem to have adversely affected NR productivity in the past and may mess up the shape of things to come.

NR productivity will be adversely affected in some places and stimulated in other places as climate warms in future.

Existing areas may become less congenial and new areas may become more favorable for NR cultivation as climate warms.

Geoinformatics and Ecological Niche Modeling help to predict how NR landscape may change as climate warms.

Further rise in atmospheric CO2 concentration can be avoided by deliberate reduction in the amount of anthropogenic CO2 emission into the atmosphere and not by increasing its removal by planting trees.

THANK YOU

james@rubberboard.org.in

