

fficient Pump sets	Savings _{-40%}		
uction Pipe & Foot Valve	5-15%		
ficient Irrigation Methods	15-25%		
otal Saving Potential	45-80%		
	fficient Pump sets uction Pipe & Foot Valve fficient Irrigation Methods otal Saving Potential		

Financing Models for Implementing AgDSM Project

- Model 1-DISCOM as a borrower
- Model 2- ESCO as a borrower
- Model 3 Farmer as a borrower
- Model 4 HT Industry as a borrower

TETRA 1804

USAID		
ESCO Ba	ased Solution Demonstrate	ed
First Ever ESCO d	leal in AgDSM on a performance contract	basis
Public Private Par	tnership with 10 Years Agreement	
Project Na me	Water Energy Nexus (WENE XA)	
Designed by	USAID In dia	
Imp leme nted by	Tetra Tech ES India Limited	
DISCOM Partner Company (BESCOM)	Bangalore Electric ity Supply	
ESCO Selected	Enzen Global Solutions, Bangalore	
Project Site Geographical area No.of villages/population % net sown/irrigated area Major crops Depth to ground water No. of feeders/pumpsets	Doddaballa pur, 60 KM from Bangalore city 29/17 000 75%/16% Mulberry & gapes 200-400 Ft. 4/700	
Typical pumpsets capact	y 5-10 HP	Th 101000.00

WENEXA Project: Key Features
BE SCOM provided all the preconditions for the project HVDS installed. One Distribution Transformer for each pump. Meters on all Distribution transformer NGO working and educating farmers for four years Detailed data available on pumps and pump efficiency
 BE SCOM ob tained in principle agreement from KERC & the Government of Karnataka to proceed on a pilotprogram Farmers get a new branded energy efficient pumpsets free with a 18 month warranty.
 ESCO to implement the pumpsets replacement as a part of the Ag DSM program ESCO finances the investment required Provides ongoing O&M support to farmers and establishes a site office
 ESCO recoups investments through sharing of the energy saved

Technical Criteria	Maximum Points		
nderstanding of the Problem & Technical Approach	30		
roposed Organization, Staffing and prior experience elated to the project	50		
novation & other factors	15		
sage of (BEE) Star-ratedpumpsets	05		
Financial Criteria	X(\$9/)		
picale with a scole of 70 of moleshall be decared as	teanically qualitied.		
engy Saving in the project with reference to the base line (n X(say)		
ッ Proportion of Energysaving proposed to be sharedwith ⊯ESCOM (in %)	Y(say)		
idding Parameter (n %)	X*Y		

USAID			-
Salient Findings of Base	Line		
\varnothing total contracted load as per ut illy	= 2602	2.00 kW	
Ø AVERAGE PU MP CAPACITY AS PER UTIL IT Y	= 4.31	Kw	
ØAVERAGE SUPPLY AVAILABILITY MONTH	= 2	30 HRS	
q TOTAL CONTR ACTED LO AD AS PER BASELINE	=5883	.00kW	
<pre>q AVERAGE PUMPC APACITY AS PER BASELINE =10.52kW</pre>			
q AVERAGE PU MPRUNNING HOURS HRSMONTH	=	162.6	
		THINK THOM	

Policy Initiatives

PolicyIssues:

• Is there any better mechanism to deliver annual Ag DSM subsidy of about \$8 Billion ? • Does converting current revenues ubsidy in tocapital subsidy makes a good business case for States ?

• How to enhance the capacity of Pump Manufacturers to meet requirement of the country? How to convert manufacturing of inefficient pumps into efficient pumps?
 Building capacity of utilities, State Govt, Regulators, Financers, ESCO, Pump Manufactures

and Farmers

(A study with the help of IMIA to suggest policy in itiative with Maharashtra as sample state is under way)

Facts about Maharashtra:

•Maharashtra has 3 million pump sets

•Total Annual subsidy is \$1 Billion.

OfBit variable subsity is a classes
 What as the planned to install 100k. IP sets incoming one year
 Estimated annual electricity consumption in agriculture is about 13 Billion units

 § WN-WIN-WN for all participant sand stateholders § Scalability of the project can be gauged from the fact that: There are 15million energised irrigation pumpsets, consuming 104 Billion units of electicity Irrigation pump sets consume about 90% of India's groundwater and 23% of its electicity. subsidy to the ture of Rs 40,000 Crores per amum 						
	India	Gujarat	Karnataka	Haryana	Punjab	Maharashtr
No. o fagric ulture pum psets (lacs) 1	150	8.5	17.75	5.2	10.12	2
Units consumed (M.U.)2	10408 5	12400	11287	10200	11500	1300
Capital invest men t (Rs c rore)	60000	3400	7099.0 96	2080	4048	1120
Yearly saving s (MU)	31225.5	3720	3386.1	3060	3450	390
Yearly saving s (Rs c rore)	9367.6 5	1116	1015.8 3	918	1035	117
Payback pe riod	6.4	3	7.0	2.3	3.9	9.
CO2 emissio n re duction (10 00 t n) 3	24355.89	2901.6	2641.1 58	2386.8	2691	304

