
Rooftop Rainwater Harvesting

The Basics: a 20 square meter rooftop, in an area with 500 mm annual rainfall, can potentially produce enough drinking and cooking water for a family of 5 for a year.²

The Basic Calculation

roof area in square meters (horizontal plane)

 $4m by 5m = 20 m^2$

total annual rainfall in mm x

500 mm

X

efficiency factor / runoff coefficient 0.9

annual water supply in liters

 $20 \times 500 \times 0.9 = 9000$ liters

The Basic Calculation

roof area in square meters (horizontal plane)

 $4m by 5m = 20 m^2$

÷

total annual rainfall in mm x

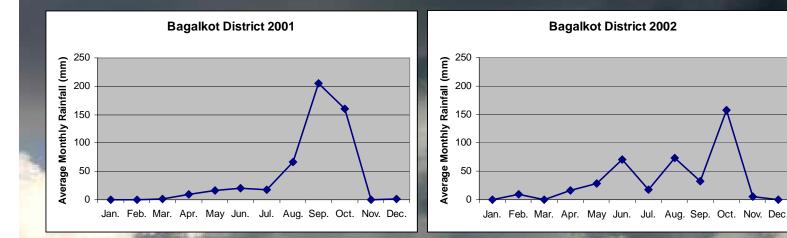
500 mm

efficiency factor / runoff coefficient 0.9

annual water supply in liters $20 \times 500 \times 0.9 = 9000$ liters

family size x days in year

X


(5 x 365)

liters per person per day

5 liters

It Begins With Rain...

You need to know how much rain falls, and when.

Bagalkot Normal Annual Rainfall = 562 mm Total

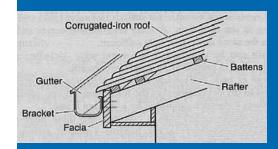
Monthly rainfall averages for the years 1991 through 2002 are available for districts in Karnataka from the State Department of Agriculture.³

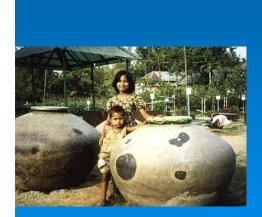
Photo by Kenn Kiser

Next, what are your needs?

- Do you have access to another water source, or do you want to meet all your needs from rooftop harvesting?
- How much water do you use per day as the year goes by? For drinking, cooking, washing, gardening, etc.
- > Will you use the rainwater for some uses only?
- Do you want to store water for just a few weeks, or to last through a long dry season?
- > How much money can you spend for the system?

Estimating Water Needs


Estimates for City of Bangalore	Liters/ person
Drinking	3
Cooking	4
Bathing	20
Flushing	40
Washing Clothes	25
Washing Utensils	20
Gardening	23
Total	135

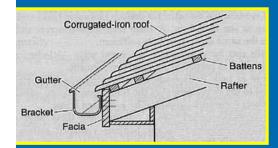

Water Usage Estimates for Two Schools	Simikere High School	Chikka Shellikeri Primary School
Number of Students	200	300
Midday Meals	Νο	Yes
Toilet	Broken	Yes
Total Daily Usage	250 Liters	1500 Liters

2

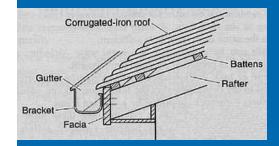
Consumption range 50 Ltrs to 300 Ltrs per person per day

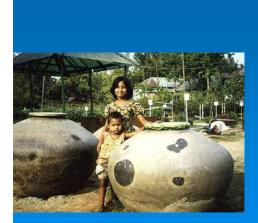
Catchment (Rooftop)

- Conveyance (Pipes)
- First Flush Separator
- Filtration
- Storage
- Usage
- Recharge

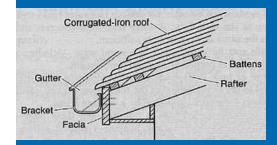


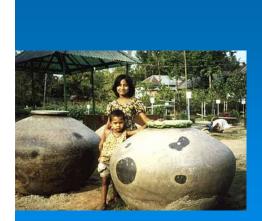
- Catchment (Rooftop)
- Conveyance (Pipes)
- First Flush Separator
- Filtration
- Storage
- Usage
- Recharge



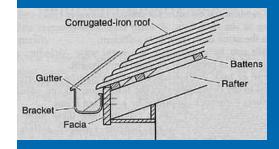


- Catchment (Rooftop)
- Conveyance (Pipes)
- First Flush Separator
- Filtration
- Storage
- Usage
- Recharge

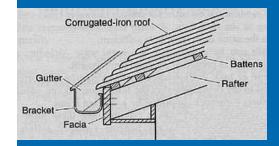


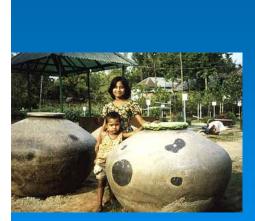


- Catchment (Rooftop)
- Conveyance (Pipes)
- First Flush Separator
- Filtration
- Storage
- Usage
- Recharge

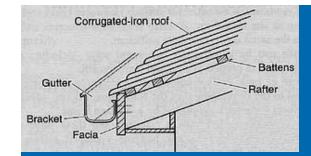


- Catchment (Rooftop)
- Conveyance (Pipes)
- First Flush Separator
- Filtration
- Storage
- Usage
- Recharge





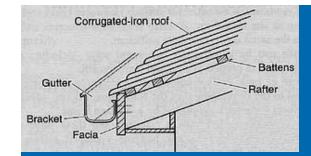
- Catchment (Rooftop)
- Conveyance (Pipes)
- First Flush Separator
- Filtration
- Storage
- Usage
- Recharge



Materials Choices

Rooftops

- > Types
 - Cement
 - Corrugated Steel
 - Tile
 - Thatch
- Issues
 - Slope
 - Runoff Coefficient
 - Bacteria
 - Availability and Cost


Pipes and Gutters

> Types

- Plastic (PVC, etc.)
- Folded Steel Sheeting
- Wood / Bamboo
- Other metal / ceramic

Issues

- Longevity
- Ease of joining
- Attachment to house
- Environmental Impacts of PVC – Issue at Scale

Materials Choices

Rooftops

- > Types
 - Cement
 - Corrugated Steel
 - Tile
 - Thatch

Issues

- Slope
- Runoff Coefficient
- Bacteria
- Availability and Cost

Pipes and Gutters

- > Types
 - Plastic (PVC, etc.)
 - Folded Steel Sheeting
 - Wood / Bamboo
 - Other metal / ceramic

Issues

- Longevity
- Ease of joining
- Attachment to house
- Environmental Impacts of PVC – Issue at Scale

🚰 PVC Info - Dangers in Making PVC - Microsoft Internet Explorer

File Edit View Favorites Tools Help

Dangers in Making PVC

Address 🙆 http://www.pvcinformation.org/links/index.php?catid=1

PVCInformation.org

Home

🔇 Back 🔻

Dangers in Making PVC PVC Products and non-PVC alternatives PVC and Fire Disposing of PVC Resources PVC In The News

Home | Dangers in Making PVC

INDIA: Tamil Nadu campaign against proposed PVC plant - hits: 64 | Last modified: September 10 2005 A global alliance of 500 organizations from 77 countries are supporting a network of Indian groups against a proposed PVC facility.

PVC, commonly known as vinyl, is used in a variety of common consumer products. What buyers may not be aware of is that no other plastic poses such direct environmental and human health risks as PVC. The problems start at the production site.

Click here for a graphic of PVC hazardous production.

In their own words: Residents speak about life next to PVC production sites in Louisiana, USA

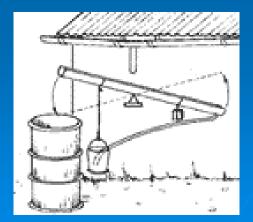
The state of Louisiana in the United States is home to half the PVC production facilities in the USA. Studies by the U.S. Agency for Toxic Substances and Disease Registry tested blood samples from 28 residents in Mossville for dioxin, a known human carcinogen and the most dangerous toxic known to science. The results proved what residents have known for years -- the people of Mossville, Louisiana are being poisoned. The average Mossville resident has three times more dioxin in her/her blood than the average U.S. citizen.

environmental poisoning from P From local residents near a PVC pla

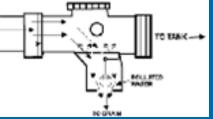
environmental poisoning from P Also from local residents near a PVC

a worker tells his story (Part III The testimony of a PVC industry wo teaching children about PVC in a cla Alternatives to PVC Pipes - Concrete, steel, galvanized iron, copper, clay, chlorine-free plastics, including high-density polyethylene (PE), polypropylene (PP) and polyisobutylene. Need to research and create demand in India

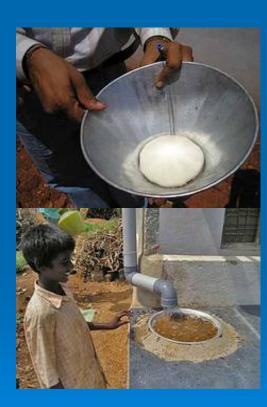
accidents in the community (Part IV) - hits: 38 | Last modified: August 30 2005

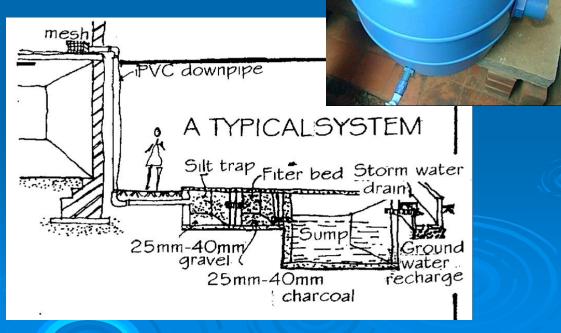

🗸 🔁 Go 🛛 Links 🂙

6

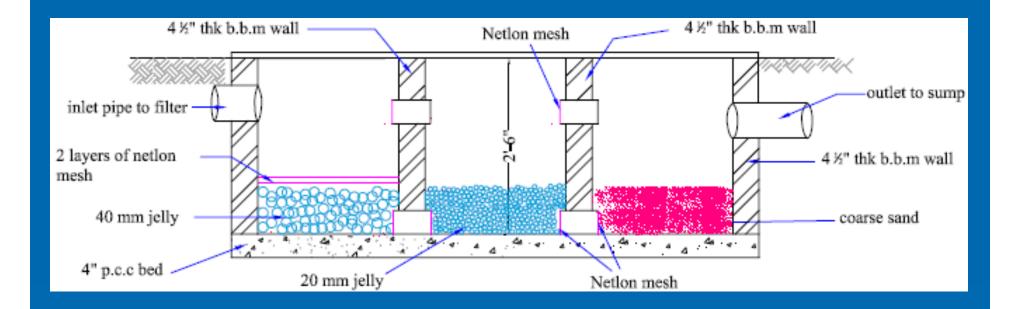

Materials Choices

First Flush Separation (5 liters and varies)

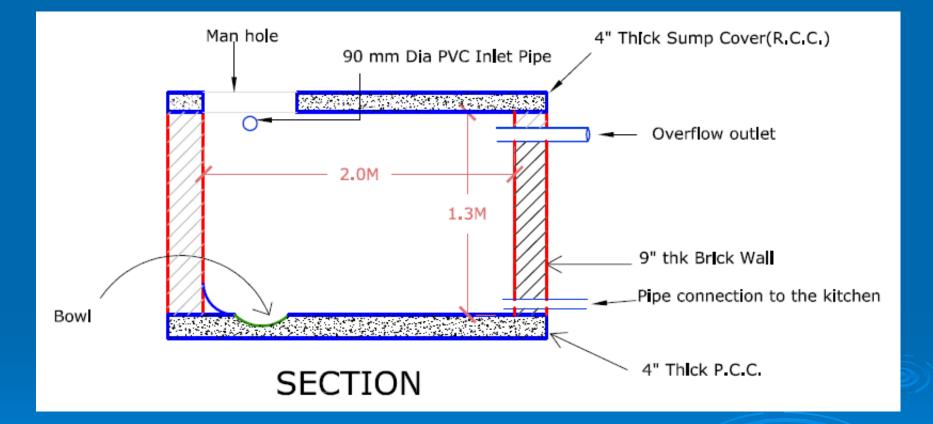




Materials Choices


Filtration

Filtration Structure Example


Design by Rainwater Club – filter for Simikere School in Bagalkot District

Materials Choices

Storage

Storage Structure Example

Design by Rainwater Club – sump for Shillikere School in Bagalkot District

Storage Principles

- safely allows excess water to overflow
- > excludes vermin and mosquitoes
- excludes light (so that algae do not grow and larval growth is inhibited)
- ventilation to prevent anaerobic decomposition of any washed in matter
- easy access for cleaning
- structural strength to withstand wear and tear, and occasional large natural forces
- no drowning hazards to passers-by or small children
- not giving the water an unacceptable taste / toxicity
- method to withdraw water (faucet, pump, piping, etc.)

Quality of Harvested Water

Remember – compare with alternate sources

Rainwater Quality

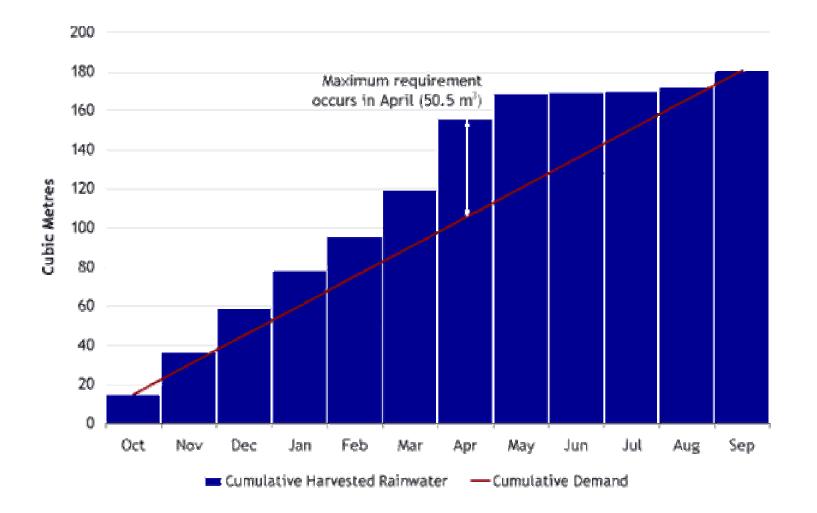
- heavy metals are low, acidity is ok, unless specific industrial source nearby (Thomas and Greene 1993)
- Rooftop / Gutter Contamination
 - leaves, dust, bird droppings
 => bacteria
 - smooth roof is better, tiles less good, thatch will yield high counts
 - careful about lead on roof and some paints
 - First flush removal often 5 liters, but depends on roof size, type, location, etc.
 - cleaning of roof and gutters

- Tanks

- filter at entrance reduces organic matter
- dark prevents algae growth
- seal well to keep out insects and other creatures
- don't leave the top open mosquitos can breed
- tap should be high enough not to draw bottom sediment
- careful of contamination from flood waters or high water table
- over time bacteria die off, sediment settles
- bacterial tests even in poorly designed systems often better than other sources

Cost of Materials

Material Requirement:	Quantity	Amount (Rs.)	
Cement	Costs recorded by Manohar for	3 bags (50 kg each)	495
Bricks	village household in Bangalore region. Tank external	300	900
Fine sand	dimensions: 6'x4'x3' equals	1/3 tractor load	400
50 mm Jelly	1960 liters storage	20 bandli	100
Kadapa Stone slabs 2' * 4'		3 numbers	336
Perforated Aluminium basin, 8" dia.		1	60
Iron mesh		6 m * 1 m	60
2" Nails		1/2 kg.	20
Тар 1"	1 number	50	
GI Pipe with Collar 1 1/2" length	GI Pipe with Collar 1 1/2" length		
20 mm gauge PVC Pipe 6" dia. 20 f	1 number	1400 (700)	
Iron angle for holding the pipe		5 numbers	350
3" PVC pipe 10 ft. length		1 number	150
PVC Collar, cap, bend, metal cramp	o & 3-valve collar		500
Transport cost for materials (approx		100	
Labour Charges:			
Masons	3 numbers	450	
Helpers	3 numbers	300	
Total			5721


Sizing Calculations for 2 Schools	Simikere High School	Chikka Shellikeri Primary School
Total Annual Rainfall	562 mm	562 mm
Roof Area	640 m²	600 m²
Total Liters (using 0.8 efficiency)	2,87,744 liters	2,69,760 liters
Average Available Per Day	788 liters	739 liters
Estimated Daily Need	250 liters	1500 liters
Needs Met?	Exceeds Need	Half Met

Sizing Calculations for 2 Schools	Simikere High School	Chikka Shellikeri Primary School
Total Annual Rainfall	562 mm	562 mm
Roof Area	640 m²	600 m²
Total Liters (using 0.8 efficiency)	2,87,744 liters	2,69,760 liters
Average Available Per Day	788 liters	739 liters
Estimated Daily Need	250 liters	1500 liters
Needs Met?	Exceeds Need	Half Met

How Big to Make the Tanks?

Use for drinking and cooking only? Or use only part of the year?

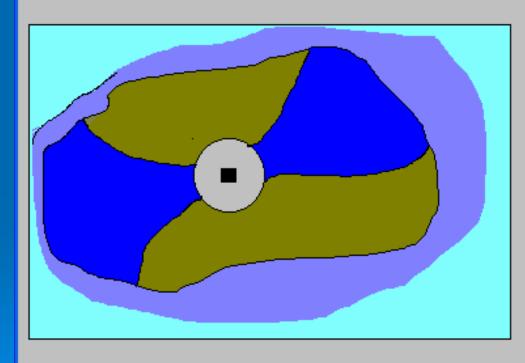
RAINWATER TANK PERFORMANCE CALCULATOR: RESULTS

Location	Bagalkot Di	istrict, Karna	ataka	Simikere High School
Roof area	640 m ²			
Nominal de	mand	250 litres		
Mean daily	runoff	870 litres		
Water mana	agement str	ategy	Constant D	emand

Using the nominal demand and tank size that you specified of 250 litres per day:

	Your Tank	Со	mparisons	
Tank Volume (litres)	20000	4400 ⁴	17400 ⁴	69600 ⁴
Reliability ¹	76%	55%	73%	97%
Satisfaction ²	77%	57%	74%	97%
Efficiency ³	22%	16%	21%	28%

- 1. Reliability is the fraction of days the total demand will be met by the system
- 2. Satisfaction is the fraction of the total water demand that can be met by the system
- 3. Efficiency is the fraction of the runoff from the roof captured by the system
- 4. The comparison tank volumes are based on the average daily roof runoff multiplied by 5 days, 20 days and 80 days respectively


SimTanka

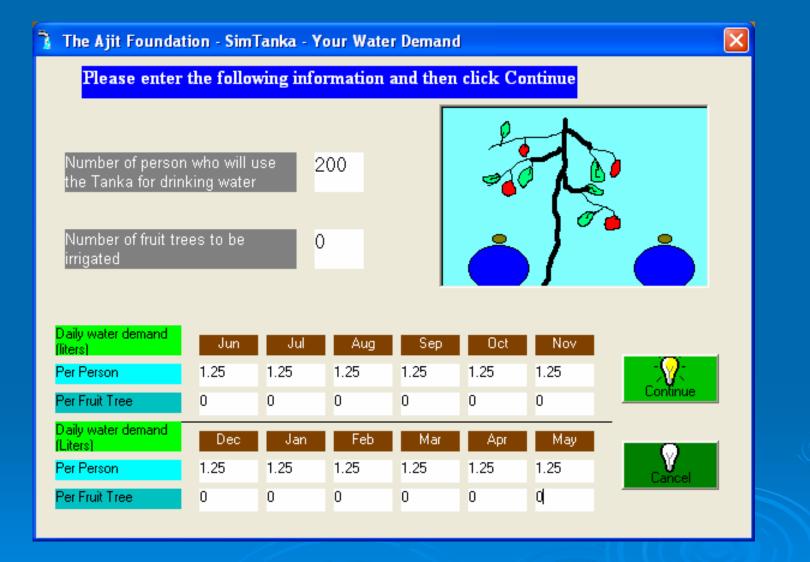
🤰 The Ajit Foundation - SimTanka - Start

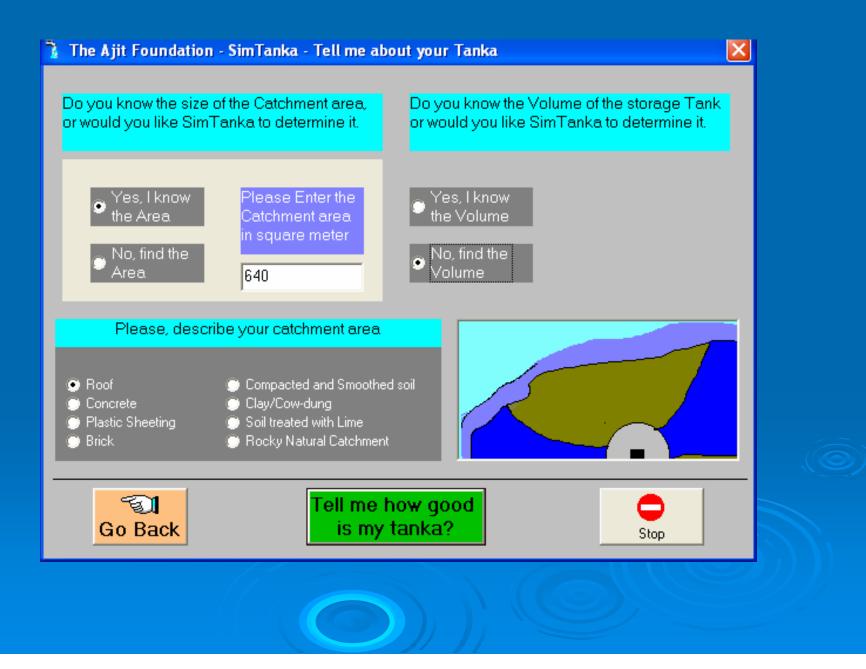
X

SimTanka is a program for simulating performance of rainwater harvesting systems with covered tank - Tanka - under fluctuating rainfall. It can be used for designing an optimum system that will meet your water needs reliably

Bagalkot

How reliable would you like your system to be?


Extremely Reliable (95%) Reliable (85%) Tolerable (75%)



😂 The Ajit Foundation - Monthly Rainfall

Click on the arrows to view the existing rainfall records, to add a new record click on the add record button.

4	Bagalko	ot	► ►I		
Year	1994				
Jun	Jul	Aug	Sep	Oct	Nov
65	56	49	16	252	4
Dec	Jan	Feb	Mar	Apr	May
0	8	0	0	38	19
Add R	ecord	Delete	Record	Q	uit

🧯 SimTanka - Performance of	a Tanka in	Bagalkot i	using Rainf	fall data fr	om 1991 to	0 2005	×
Catchment area in square meter	640.0 m2	The	Optimum Tanl	< Size	45.4 -	+/- 7.8 m3	
	Jun	Jul	Aug	Sep	Oct	Nov	
Your Monthly Demand in Liters	7750	7750	7750	7750	7750	7750	
Percentage of time when the Tanka will be able to meet your demand	100%	100%	100%	100%	100%	100%	
Monthly Demand in liters that can be meet 85% of time	7750	7750	7750	7750	7750	7750	
	Dec	Jan	Feb	Mar	Apr	Мау	
Your Monthly Demand in Liters	7750	7750	7750	7750	7750	7750	
Percentage of time when the Tanka will be able to meet your demand	100%	100%	100%	100%	100%	100%	
Monthly Demand in liters that can be meet 85% of time	7750	7750	7750	7750	7750	7750	
End		Desig i v ew Tanka			Sint .		_

45 cubic meters = 45,000 liters = tank about 3.6m x 3.6m x 3.6m

🧯 SimTanka - Performance of	a Tanka in	Bagalkot ı	ising Rainf	fall data fro	m 1991 to	2005	×
Catchment area in square meter	640.0 m2		volume of the meter	storage tank in	2	0.0 m3	
	Jun	Jul	Aug	Sep	Oct	Nov	
Your Monthly Demand in Liters	7750	7750	7750	7750	7750	7750	
Percentage of time when the Tanka will be able to meet your demand	100%	100%	100%	100%	100%	100%	
Monthly Demand in liters that can be meet 85% of time	4119	4119	4119	4119	4119	4119	
	Dec	Jan	Feb	Mar	Apr	Мау	
Your Monthly Demand in Liters	7750	7750	7750	7750	7750	7750	
Percentage of time when the Tanka will be able to meet your demand	100%	58%	25%	25%	53%	100%	
Monthly Demand in liters that can be meet 85% of time	4119	4119	4119	4119	4119	4119	
End		Desig hte ew Tanka			Sint .		

Maintenance and Security

Maintenance Tasks

- If first flush requires manual operation or emptying, must be done
- Roof and gutter cleaning after dry spells (need access to roof)
- Filter inspection and cleaning
- Tank inspection and cleaning (though sediment may actually aid in decomposition)
- Inspect gutters and pipes
- Maintain pumps / faucets

Lessons from Schools

- Identify who is responsible for maintenance and repair
- Parts may be stolen, especially over summer break – appoint a watchdog committee
- Hire someone to clean roof
 if there is no staircase
- Time is limited design a lower maintenance system
- Common problems are breakage of faucets / pump handles

Maintenance and security is improved when community perceives value of the project

School Curriculum Ideas

- 10th standard textbooks for Karnataka have units on: water conservation, resources of India, pollution, statistics, and geometry – all related to rainwater harvesting.
- Curriculum ideas can be shared from other programs, for example:

RainCatcher - "a pilot project that brings together government representatives, school administrators, teachers, and students to teach, by example, the methods and value of rain harvesting at selected schools in Israeli, Jordanian, and Palestinian communities." <u>http://www.watercare.org/</u>

Rain harvesting model prepared by a student at Abu Gosh Middle School.

Student at Abu Gosh Middle School showing some of the weather graphs and charts she posted on the school bulletin board.

B		
	Africa harvests rainwater from the roof / Radio Scripts / DCFRN - Microsoft Internet Explorer	
<u>File E</u> dit <u>V</u> iew F <u>a</u> vorites <u>T</u>	ools <u>H</u> elp	
🚱 Back 🝷 🕥 👻 👔	🔰 🏠 🔎 Search 🤸 Favorites 🤣 🖾 🗣 🌺 🔯 👻 📃 🖓	
Address 🕘 http://www.farmradio.	org/english/radio-scripts/75-3script_en.asp	So Links
		Français Site Map Contact Us
	eveloping Countries Farm Radio Network	R_ALS. WAR
Donate Now	Searc	:h: Go
Farm Radio Network ▶ About the Network	Radio Scripts	
Mission Who We Are Core Program	Package 75, Script 3 June 2005	Radio Scripts Comment on Script 75.3
 Network Activities History of the Network 	Secondary school in South Africa harvests rainwater from the roof	 Print Radio Script Latest Radio Scripts
▶ Radio for Development	Notes to broadcaster	 Radio Scripts in Chronological Order
Publications DCFRN in the News		
Join the Network	Host 2: Now I wondered how the school could even get started with such a needed information about the roof, the rainfall and the price of storage tank	
Partner Broadcasters	Host 1: Fortunately, it was a school, so these were questions that could be science teachers asked their students to calculate the size of the school ro	
Network Partners Partner Profiles	Host 2: The geography teachers asked their students to find the average a	nnual rainfall in the region.
 Broadcaster Discussion Group Partner News and Events 	Host 1: The economics teachers asked their students to do research about tanks.	t the price of water storage
LARRRA Partner Awards	Host 2: The students and teachers calculated that the school roof, with suit systems would be able to capture some 300,000 litres of rainwater every y	
Broadcaster Resources ▶ Radio Scripts		
		🔮 Internet
2		- Incontoc

Information Sources

- 1. Domestic Roofwater Harvesting Research Program http://www.eng.warwick.ac.uk/dtu/rwh/index.html
- 2. Rainwater Club Vishwanath and Karan www.rainwaterclub.org
- 3. Karnataka Department of Agriculture http://raitamitra.kar.nic.in/statistics.html#B24
- 4. eToolkit on Rainwater Harvesting <u>http://www.rainwater-toolkit.net/index.php</u>
- 5. Information on PVC Plastic PVCInformation.org
- 6. SafeRain Separator http://www.saferain.com.au
- 7. German Filters http://www.wisy.de/eng/eng/products.htm

Information Sources (cont.)

- SimTanka (download at rainwater toolkit site <u>http://www.rainwater-toolkit.net/index.php?id=57</u> produced by Vikram Vyas, Ajit Foundation, Jaipur)
- 9. Karnataka Textbooks Online http://www.dsert.kar.nic.in/textbooksonline/first.asp
- 10. RainCatcher School Program http://www.watercare.org
- 11. Farm Radio Network http://www.farmradio.org/english/radio-scripts/75-3script_en.asp

RAINWATER TANK PERFORMANCE CALCULATOR: RESULTS

Location	Bagalkot District, Karn		ataka	Shellikeri Primary School
Roof area	600 m ²			
Nominal de	mand	1500 litres		
Mean daily	runoff	816 litres		
Water man	agement st	rategy	Constant D	emand

Using the nominal demand and tank size that you specified of 250 litres per day:

	Your Tank	Co	mparisons	
Tank Volume (litres)	5000	4400 ⁴	17400 ⁴	69600 ⁴
Reliability ¹	11%	11%	31%	43%
Satisfaction ²	19%	17%	35%	45%
Efficiency ³	35%	31%	64%	82%

- 1. Reliability is the fraction of days the total demand will be met by the system
- 2. Satisfaction is the fraction of the total water demand that can be met by the system
- 3. Efficiency is the fraction of the runoff from the roof captured by the system
- 4. The comparison tank volumes are based on the average daily roof runoff multiplied by 5 days, 20 days and 80 days respectively

🤰 SimTanka - Performance of a	a Tanka in	Bagalkot ı	using Raint	fall data fro	om 1991 to	0 2005	×
Catchment area in square meter	600.0 m2 The Optimum Tank Size			186.4	186.4 +/- 46.5 m3		
	Jun	Jul	Aug	Sep	Oct	Nov	
Your Monthly Demand in Liters	46500	46500	46500	46500	46500	46500	
Percentage of time when the Tanka will be able to meet your demand	35%	23%	38%	75%	89%	47%	
Monthly Demand in liters that can be meet 95% of time	20017	20017	20017	20017	20017	20017	
	Dec	Jan	Feb	Mar	Apr	Мау	
Your Monthly Demand in Liters	46500	46500	46500	46500	46500	46500	
Percentage of time when the Tanka will be able to meet your demand	21%	0%	0%	0%	0%	9%	
Monthly Demand in liters that can be meet 95% of time	20017	20017	20017	20017	20017	20017	
End		Desig i ye w Tanka			Print		

Shellikeri - Optimum

👔 SimTanka - Performance of a Tanka in Bagalkot using Rainfall data from 1991 to 2005

Catchment area in square meter	600.0 m2 The volume of the storage tank in 5.0 m3 cubic meter				.0 m3		
	Jun	Jul	Aug	Sep	Oct	Nov	
Your Monthly Demand in Liters	46500	46500	46500	46500	46500	46500	
Percentage of time when the Tanka will be able to meet your demand	0%	0%	0%	0%	0%	0%	
Monthly Demand in liters that can be meet 95% of time	1164	1164	1164	1164	1164	1164	
			_				
	Dec	Jan	Feb	Mar	Apr	Мау	
Your Monthly Demand in Liters	Dec 46500	Jan 46500	Feb 46500	Mar 46500	Apr 46500	May 46500	
Your Monthly Demand in Liters Percentage of time when the Tanka will be able to meet your demand							
Percentage of time when the Tanka	46500	46500	46500	46500	46500	46500	

Shellikeri - Actual

×