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Preface

An artificial neural network (ANN) is a flexible mathematical structure, which is capable of identifying
complex non-linear relationships between input and output data sets. ANN models have been found
useful and efficient, particularly in problems for which the characteristics of the process are difficult to
describe using physical equations. The success with which ANNs have been used to model dynamic
system in other fields of science and engineering, suggests that the ANN approach may prove to be
an effective and efficient way to model the rainfall runoff process. Further, for hydrological
applications, ANN models can take advantage of their capability to reproduce the unknown
relationship existing between a set of input variables descriptive of the system, such as rainfall and
~ river flow.

This report, titled ‘Rainfail-runoff modeling using artificial neural network fechnique’, presents a
research study conducted to develop a rainfall-runoff model using ANN approach and has been
trained and validated for the Baitarani River Basin, Orissa. The study demonstrates the applicability of
ANN approach in developing effective non-linear models of Rainfali Runoff process without the need
to explicitly represent the internal hydrologic structure of the watershed. The study has been done by
Sri. K. P. Sudheer, Scientist ‘B’, with the assistance of Sri. P. C. Nayak, Scientist 'B* and Sri. D.
Mohan Rangan, Technician Gr. Il. Dr. Ramasastri, Scientist ‘F’ and Co-ordinator, supervised the

research work. i l D

(K.S. RAMASASTRI)
DIRECTOR
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ABSTRACT

The artificial neural network (ANN) methodology has been reported to provide reasonably good
solutions for circumstances where there are complex systems that may be poorly defined or
understood using mathematical equations, problems that deal with noise involve pattern recognition,
and situations where input data are incomplete or ambiguous by nature. Because of these
characteristics, it was believed that ANN could be applied to model the daily rainfall runoff
relationship. Accordingly, a research study was conducted by employing ANN computing approach to
forecast daily runoff as a function of daily precipitation and previous values of runoff. The model was
trained and tested for the data of the Baitarani River Basin, Orissa. Two ANN algorithms were
considered while developing the model, namely back error propagation network (BPN) and radial
basis function network (RBF). The sensitivity of the prediction accuracy to the number of hidden layer
neurons in a back error propagation algorithm was investigated. Based on this analysis, two BPN
models were selected to represent the rainfall-runoff transformation. These two BPN models and the
RBF model were compared for their performance using various statistical indices. The performance
ANN model for Baitarani river basin was compared with that of existing models. The study
demonstrates the applicability of ANN approach in developing effective non-linear models of Rainfall
Runoff process without the need to explicitly represent the internal hydrologic structure of the
watershed. The developed ANN model was found performing to a good degree of accuracy compared
to other models in use.



Chapter 1
Introduction

Floods are indeed a part of the earth’s natural water cycle and have baen occurring right from the
beginning. In fact, earth’s geography has time and again been altered by floods and changing courses
of maijor river systems. However, the damage due to floods had tended to increase with time due to
greater interference by man in natural processes and encroachment of flood plain zones and even
riverbeds. The problem of floods faced by India is unique in several respacts due to varied climate and
yainfall pattems in different parts of the country, Of the country’s fotal goeographical area of about 328
million heclares (m. ha.), about 41 m.ha. (nearly one eighth) is considered flood prone. There are
occasions when one part of the country is experiencing floods while another is in the grip of a sevare
drought. Forewarning of floods can indeed go a long way in preventing much of the potential damage
due 1a floods. For many years, hydroiogists have attempted to understand the transformation of rainfal
to runoff, in order to forecast stream flow for purposes such as water supply, flood control, irrigation,
drainage, water quality etc.

The rainfall runoff transformation is one of the most complex hydrologic phenomena to comprehend due
to the tremandous spatial and temporal variability of watershed characteristics and precipitation patterns
and number of variables involved in the mathematical modeling of the physical processes. Since 1930's
numerous rainfall runoff {R-R) modals have been developed to forecast stream fiow. Conceptual R-R
models are designed to approximate with thelr structures (in some physically realistic manner) the
general internal sub processes and physical mechanisms which govern the hydrologic cycle. These
conceptual models, usually incorporate simplified forms of physical laws and are generally non finear,
time invariant and deterministic with parameters that are representative of watershed characteristics.
Until recently, for practical reasons {data availability, calibration problems etc.), most conceptual
watershed models assumed lumped representation of the paramaters.

While conceptual modsls are of importance in the understanding of hydrologic process, there are many
practical situations such as stream flow forecasting where the main concern is with making accurate
predictions at specific watershed locations. In such a situation, a hydrologist may prefer not to spend
the time and effort required to develop and implement a conceptual modei, and instead implement a
simpla system theorstic model {some times referred to as black box). In these models, difference
equations or differential equation based models are used to identify a direct mapping between the inputs
and outputs without detailed consideration of the internal structure of the physical processes. The linear
time series models such as ARMAX (auto regressive moving average with exogenous inputs) models
developed by Box and Jenkin (1976) have been most commonly used and have been found to provide
satisfactory pfedictions in many applications. However, such maodels do not attempt to represent the
non linear dynamics inherent in the transformation of rainfali to runoff and therefora may not always
perform well.



Owing to the difficulties associated with non-linear model structure identification and parameter
estimation, very faw truly non-linear watershed models have been reported. In most cases, linearity or
piecewise linearity has heen assumed. The model structural arrors that arise from such assumptions
can, fo some extent, be compensated for by allowing modal parameters to vary with time, For example,
real time identification techniquas such as recursive least squares and state space Kalman filtering have
been applied for adaptive estimation of model parameters, with generally acceptable results.

Recently significant progress in the fleld of non-linear pattern recognition and system control theory
have been made possible through advances in a branch of non linear system theoretic modeling called
artificial neural network (ANN). ANN Is a non-linear mathematical structure, which iz capable of
representing arbitrarily complex non-linear processes that relate the inputs and outputs of any system.
The success with which ANNs have been used to modsl dynamic system in other fields of science and
engineering, suggests that the ANN approach may prove to be an affactive and efficient way to model
the rainfall runoff processes in situations where explicit knowiedge of the intemal hydrolagle sub
processes is not required.

ANN was first developed in the 1940's and in racent decades, considerable interest has been raised
over their practical applications, because the current algorithms overcome the limitations of eady
networks. There are a wide variety of ANN algorithms, however the main function of all ANN paradigms
is to map a set of inputs to a set of outputs, An ANN i describad as an information processing systemn
that is composed of many non-linear and densely interconnected processing elements of neurons,
ANNs are proven to provide better solutions when appiied to (j) complex systems that may be poorly
described or understood; (ji) problems that deal with noise or involve pattem recognition, diagnosis,
abstraction and generalization and {jii} situation where input is Incomplete or ambiguous by nature,
ANN has the ability to extract the pattems in phenomena and overcome the difficulties due 1o the
selection of model form such as linear, power or polynomial. An ANN algorithm is capable of modeling
the rainfall runoff relationship due to its ability to generalize pattemn in noisy and ambiguous Input data
and to synthesize a complex mode! without a priori knowledge or probability distributions,

In this study, ANN aigorithms were used to model the dally rainfall runoff relationship for the Baitarani
river basin, Orissa, India. The study demonstrates the applicability of ANN approach In developing
effective non-linear models of rainfall runoff process without the need to explicitly reprasant the internal
hydrologic structure of the watershed. The study also aims at identifying the best ANN
aigorithm/structure o represent the rainfall runoff process effectively. The performance of the ANN
model for Baitarani river basin was compared with that of existing models.



Chapter 2
Study area and data

The Baitarani river basin, covering an area of 14,218 sq. km is one of the three major basins
in the Orissa State. The index map of Baitarani basin in shown in Fig 2.1. Although
comparatively it is smaller than that of Mahanadi and Brahmani basins, it brings heavy flow
and creates havoc in lower reaches during monsoon. Out of its drainage area of 14,218
sq.km, 736 sq.km. lies in Singhbhum district of Bihar and the rest lies inside the state of
Orissa,

The Keonjhar district of Orissa covers the major portion of the basin area whereas
Mayurbhanj, Sundargarh, Dhenkanal, Cuttack and Balasare districts cover the rest. The river,
after traversing in hilly regions, enters the plains at Anandpur. Further below it meets the
deitaic region at Akhuapada where it branchies off and bifurcates. Further below it meets the
river Brahmani and assumes the name Dhamara and joins the Bay of Bengal. The basin map,
up to Anandpur is shown in Fig. 2.2.

Tha River System

The river Baitarani originates from Guptaganga hills in Keonjhar district of Orissa, about 2 km
from Gonasika village, at an elevation of 900m at Latitude 21" 31’ North and Longitude 85 °
33’ East. Initially the river flows in a northern direction for about 80 Km and then takes a
sudden right-angled tum. In this reach the river serves as a boundary between Bihar and
Orissa states for a certain length that is up to the confluence of Kongira river. The river while
flowing towards south enters the plains at Anandpur and further downstream meets the
deltaic zone at Akhuapada. The river after travelling a total distance of 360 km jeins the bay
of Bengal. Thera are, in all 64 tributaries of Baitarani river out of which 35 join in the left and
29 join in the right side. The prominent tributaries are Kangira, Khairi Bandhan, Deo,
Kanjhari, Sita, Kusei and Salandi.

Basin Characteristics

Climate

The Baitarani Basin is having 14,218 Sq.Km drainage area. The basin consists of
Singhbhum district of Bihar and Keonjhar, Dhenkanal, Mayurbhanj, Sundargarh, Cuttack and
Balasore districts of Orissa, The upper Baitarani is about 700m above ms| and therefore the
climate of upper Baitarani is of extreme nature. The middle Baitarani basin is partly hilly and
partly plain, and the lower Baitarani basin in Coastal area. The effect of the sea is very
much felt in Lower Basin of Coastai plain. Keonjhar is the district headquarters of
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Fig 2.1 Index map of Baitarani river basin
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Keonjhar district, situated in the middie of the basin. One IMD station is functioning at
Keonjhar from which ali detall information pertaining to climate and other meteorological data
can be obtained. The maximum-recorded temperature of Keonjhar district in summer days is
48.5 degree centigrade and minimum in winter days is 6 degree centigrade.

The rainfall received in the basin is mainly from South West Monsoon and lasts from June to
October. About 80% of annual precipitation occurs during these months. The annual rainfall
is of the tune of 1595 mm. and averags rainfall is 1187 mm.

The average monthly humidity data are available at IMD station Keonjhar as well as at
Cuttack and Balasore. It is seen that the relative humidity is minimum in the months of April
and May and maximum in the months of August and September. The maximum and
minimum humidity are of the order of 83.08% and 39.63% respectively, on average.

The maximum cloud cover is observed in the months of June and July whereas minirmum is in
December and January.

Geology

The geological features in and around the Upper Baitarani are of two main series — the iron
ore series and the younger Kolhan series. The iron ore series are represented by mica,
hornblende, schist, bornblende, gneiss, phylile, Chert and Jasper which along with
Singhbhum granite constitute the surrounding Country rock. The Kolhan series comprises
mainly flat bedded Kolhan, sand stone and Conglomerate. The sandstone usually forms the
flat-topped hills over the peneplained granite tarrain in this area. The generalized geological
set up for whole of south Singhbhum and Keonjhar district, is

(i} New Dolerite (i) Kothan series (iii) Singhbhum granite (iv} iron ore series.

Soclo-economic status

The population of the basin as per the 1891 Census was 31,05,926 out of which the rural
population was 28,09,671. As such the rural population tomes tc 90.5% of total population.
The density of population in the basin as per the 1991 census Is 218 per sq.km as against
state average of 202 per sq.km.

The river Baitarani flows mostly through the Keonjhar district of Orissa, where the pace of
development was absolutely slow in the past. The people of the basin mostly depend on
agriculture, which is subjected to vagaries of nature, in form of drought due to erratic, uneven
rainfall caused mostly by depression in Bay of Bengal during the monsoon season. There are
only a few industries in this basin, though the basin has abundance of mineral resources.



Most of the people, who depend on agriculture, have low per ¢apita agricultural income. So
the people are economically poor and backward,

Keonjhar district forms about 60% of the Baitarani basin. The basin population works out to
be 31,05,926 (1991 Census). The urban population is 2,968,255 and comes to 9.5% of the
total population of the basin. There are 11 towns in the basin namely, Joda, Champua,
Barbil, Anandpur, Karanjia, Bhadrak, Chandbali, Jajpur, Jajpur Road, Basudevpur.

Food and agriculture

Agriculture is the primary occupation of the inhabitants of the basin. However due to lack of
irrigation facilities, farmers are forced to depend on the uncertainties of rainfall as such
agricultural production is much below average production of the State. However after
construction of Salandi Irrigation System in Lower sub-basin as well as Kanjhari and Remal
Project in middle sub-basin more areas have come under irrigation. Further the ongoing
projects like Kanupur, Dao etc. will increase the irrigation potential. Though the bagin is rich in
minerals, industrial development has not taken place due to lack of infrastructure facillties as
well as lack of investment by government and other private agencies.

Land use paitern

Out of 831 thousand hectares of geographical area of Kecnjhar district, 307 thousand
hectares come under net area sown and 249 thousand hectares come under forest coverage.
The net area sown and forest area are 37% and 30% of total area. The above figure of
Keonjhar district gives an idea of the land coverage of the basin as it cover 60% area of the
basin.

frrigation

In early days there was very little irrigation in this basin. The trend of irrigation has undergone
changes since 1978-79 due to construction of medium and minor irrigation projects. At
present the total area under irrigation in Kharif of the basin is reported to be 134458 ha. The
technique of modern agriculture systems with application of chemical fertilizers, pesticides
and use of tested seeds has not been widely practiced in this basin, as such coupled with lack '
of irrigation facilities the yield of food grains is coming much less than the average.

Indusiries

Despite the available rich mineral wealth, the industrial development in Baitarani basin is very
slow. Though the basin is rich in minerals, industrial development has not taken place at a
faster rate due to lack of infrastructure development and lack of investment by Govermment
and private agencies. The important industries in the basin are, TISCO Ferrc Manganese



ptant, Joda, Ipitata Sponge Iron Plant, Joda, Orissa Sponge Iron Plant Palaspanga, Kalinga
Iron works, Badbil, Tata Iron and Steel Company, Brahamnipal, Electrochem COrissa Lid.,
Joda and Ferro Alloys Corporation Lts., Randia. [n addition to the above there is a number of

small scale industries in the basin.

Data Availabiiity

The present study intends to develop a rainfall-runoff relationship for the hasin from the
available historical data records, so as to develop effective water management policies to
meet the demand from all sectors.

 Rainfall

The Baitarani basin has 15 rain gauge stations in and round it. These are concenirated
mostly in upper and middle portions of the basin. There are breaks in continuity of data of
some of the stations. After checking the data of all the stations for period of availability, four
rain gauge stations were considered for the study. The location map of all the rain gauges is
depicted in figure 2.3.

Stream flow

Central Water Commission (CWC) maintains one gauge-discharge (G-D) site at Anandpur,
intercepting a catchment area (C.A.) of 8570 sq.km. Daily values stream flow data at this G-D
site are available from 1971. The mode of observation is current meter. The G-D site at Biridi
intercepts a CA of 10125 sq.km. The Department of Water Resources, Govt. of orissa
maintain it, The Runoff data are available from 1964, but the reliability of observed data is not
good. The Department of Water Resources maintain the G-D site at Basudevpur. The site
intercepts a CA of 1525 sq.km. The mode of observation is by float and the quality of data is
not reliable in this case too (OWPS, 1994). It has been seen at the time of preparation of
updated yield series of the Kanupur project that the observed data were inconsistent. The
Department of Water Resources maintain the G-D site at Tondo too. The site intercepts an
area of 6708 sq.km. But the data were found to be inconsistent at the time of preparation of
detailed project report for Bhimkund Irrigation project, as reported by Orissa Water Planning
Organization, Bhubaneswar.

Data preparation )

The data of Anandpur G-D site maintained by CWC are reliable and of good quality. The data
for the periog 1972-1994 were employed in the study. The study has been restricted to
monsoon season (June to October) alone, since the interest was to forecast the flood flows in
the basin using the developed model. The entire available data has been used for
standardizing the records and is described in detall in the next chapter.
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Fig 2.3 Mean monthly rainfall derived from 24 years data at Anandpur

The rainfall data used in the study were for the period of 1880-1982. This constraint for
sticking to three years of data has arisen due to non-availability of rainfall data for the
corresponding period in which flow data were also available. However, rainfall data were
available for more than 10 years in single rain gauge station at Anandpur. Since a true areal
representation of rainfall is preferred in any rainfall-runoff modeling, only a short duration data
was employed in the study. The mean monthly values of rainfall, derived from the Anandpur
station data are presented in Fig 2.3.

A preliminary analysis was conducted to assess the consistency of the data used in the study,
on an average, by developing runoff coefficient values for the Baitarani basin. The analysis
resulted in consistent values of runoff coefficient for the years 1980 to 1982 (25 to 30%) an an
annual basis. The runoff coefficient evaluated for the monsoon season was of the order of 35
to 48%. The high value for the coefficient was obtained during flood events. This analysis
confirms the data consistency.

Table 2.1 The rainfall stations and their Thiessen weights

Station Name  Thiessen weight (%)

Champua 3272
Karanijia 3214
Thakurmunda 20.95
Anandpur 1419

Thiessen polygons have been drawn (Fig 2.2) for the four stations considered in this study to

compute the weights. The influencing stations and their corresponding Thiessen weights are
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presented in Table 2.1. Using the above weights, and comresponding daily rainfalt data of the
stations, the average areal precipitation for the Anandpur catchment has been estimated. The
weighted rainfall and recorded runoff (stream flow) data for the three years 1980-1982 is
presented in Fig 2.4.
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Chapter 3
Model Development

The need to predict river flow after heavy rains is important for public safety, environmental
issues, and water management. One of the most accepted and widely used techniques for
predicting future events is time series analysis. Time series refers to observations of a
variable that occur in a time sequence. Time series techniques can be used to analyze the
statistical behavior of a series of experimental or observed data over time, where these data
have significant correlation induced by sampling of adjacent time points. Such models do not
attempt to represent the non-linear dynamics inherent in the process, and therefore may not
always perform well,

During heavy rain periods, some of the forms of hydrological balance (evaporation, infiltration
and storage variations) can be neglected since they give no relevant contribution to the river
flow rate in the short period. In contrast, accurate information on rainfall and on the state of
the basin must be available. The rainfall gives a measure of the amount of water gathered by
the basin and represents the perturbations experienced by the water system. The state of the
basin, which is correlated, albeit directly, to the flow rate, represents the capability of the river
systems to respond to rainfall perturbation. However, even in these simplified conditions, the
usual approaches prove to be inefficient or too burdensome (Woolhiser, 1996).

In the hydrological context, as in many other fields, ANN are increasingly used as black box
simplified models (Bishop, 1994). For hydrological applications, ANN models can take
advantage of their capability to reproduce the unknown relationship existing between a set of
input variables descriptive of the system, for example rainfall river flow rats {Chakraborthy et,
al, 1992)

Artificial neural network

An ANN is an information processing system inspired by the way, the densely interconnected
parallel siructure of the mammalian brain processes information. ANN's are collection of
mathematical models that emulate some of the observed properties of biological neuron
systems and draw on the analogies of adaplive biological lsarning. Neurons in an ANN are
arranged in to groups called layers. Each hauron in a layer operates in logical parallelism.
Information is transmitied from one layer to others in serial operations (Hecht — Nielson,
1890}, A network can be comprised of one to many layers. The basic structure of a network
usually consists of three layers: the input tayer, where the data are introduced to the network;

12



the hidden layer or layers, where data are processed; and the output layer, where the results
of given input are produced.

Although ANN's have been around since the late 1930's it was not until the mid 1980’s that
algorithms became sophisticated enough for general application. Today, ANN's are being
applied to an increasing number of real world problems of considerable complexity. The
advantage of ANN's lies in their resilience against distortions in the input data and their
capability of learning. They are often good at solving problems that are too complex for
- conventional technologies. There are multitudes of different types of ANN. The present study
employed two types viz. back propagation neural network and radial basis function network.
A brief description of both the structures are outlined below,

Back Propagation Network

Back propagation is the most widely used of the neural network paradigms and has been
applied successfully in application studies in a wide range of areas. Several neural network
models can be used in pattern recognition {(both supervised and unsupervised). For
supervised algorithm, the most commonly used ANN is the three layer feed forward network
trained using the back prapagation aligorithm (Rumelhart and MeCleland, 1986; Jones and
Hoskins, 1987) which is adopted in the present study.

The back propagation algorithm (BPN} involves a forward propagating step foliowed by a
back propagating step. Both the forward and back propagation steps are done for each
paitern presentation during training. The forward propagation step begins with the
presentation of an input pattern to the input layer of the network, and continues as activation
level calcuiations (activation level parameter associaled with each processing unit is its out
put value) propagate forward through the hidden layers. In each successive layer, every
processing unit sums its inputs and then applies a transfer function to compute its output. The
output layer of units then produces the output of the network. The backward propagation step
begins with the comparison of the network’s output pattern to the target vector, when the
difference or “error” is calculaied. The backward propagation step then calculates error values
for hidden units and changes for their incoming weights, starting with the output layer and
moving backward through the successive hidden layers. In this back propagating step, the
network corrects its weights in such a way as io decrease the observed error. A general
structure of the BPN is depicted in Fig 3.1.

13
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The back propagation algorithm can be described in three equations. First, weight
connections are changed in each learning step (k) with

AWy = NOSIXE + mAW, @.1)

i

Second, for output nodes it holds that

5;; = (d; ~0j)f'(Ij) (3.2)
and third for the remaining nodes it holds that
8y =113 )zk; SEIwWEY (3.3)
where,
x® = actual output of node j in layer s;
wi® = weight of the connection between node | at layer (s-1} and node k at layer s
5% = measure for the actual ervor of node j;
I, =  weighted sum of the inputs of node j in layer s;
nt) = time dependent learning rate;
fl = transfer function;
m = momentum factor {between 0 and 1) and
dando = desired and actual activity of node j (for output nodes only)

Radial Basis Function Network

Radial Basis Function networks has a state Gaussian function as the non-linearity for the
hidden layer processing elements. The Gaussian function responds only to a small region of
the input space where the Gaussian is centered. The key to successful implementation of the
network is to find suitable centres for the Gaussian functions. This can be done with
supervised leaming, but an unsupervised approach usually produces better results. For this
reason, the present study employed as hybrid supervised — unsupervised topology for

tearning.

The most common idea in a hybrid learing procedura is to have one layer that learns in an
unsupervised way, followed by one (or more) layers trained by back propagation. The network
architecture exainined by Moody and Darken (1989) has been employed in the study. The
hidden units in the Moody-Darken network are neither linear, nor sigmoidal, instead they have
normalized Gaussian activation functions of the form:
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where gj(e) is the input vector itself. The Gaussians are a particular example of radial basis
functions. Radial basis networks consist of two layers: a hidden radial basis function layer and
an output linear neuron layer. The network architecture is presented in Fig 3.2.

The network functions as follows. Suppose a particular input vector £* lies in the middle of
the raceptive field for unit j, so & = M;. If the overlaps between the receptive fields are
ignored, only hidden unit j will be activated, making it the only “winner”. One could simply

choose the output weights leading from that unit to be Wy = &7 (for each i), which will

produce the target pattern &/ at the output assuming linear output units. If another input lies

say, between two receptive figld centers, then those two hidden units will be appraciably
activated and out put will be the weighted average of the corresponding targets. In this way
the network is expected to make sensible smooth fit to the desired function.

The unsupervised part of learning is the determination of the receptive field centers #; and
weights ;. Appropriate H;s can be found by any vector guantisation approach including

the usual comflowitive learning algorithm. (Hertz et. al., 1991). The o,s are usually
determined as ad hoc choice, such as mean distance to the first few nearest neighbor m’'s.

The performance of the network is not very sensitive fo the precise values of the o i S-

Moody and Darken tried their method out on the extrapolation problem for the Mackey-Glass
eguation and found that the present metheod, with Gaussian receptive fields, allows ons to fit
an arbitrary function with just one hidden layer (Hartman, 1990).

The advaniage of the RBF network is that it finds the input to output maps using local
approximators. Usually, the supervised segment is simply a linear combination of the
approximators. Since linear combines have few weights, these network train extremely fast

and require training samples.
Rainfall Runoff Modeling

The steps involved in the identification of a dynamic model of a system are (1) selection of
input — output data suitable for calibration and validation, (li} selection of a model structure
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and estimates of its parameters, and (iii) validation of the identified model. This study
compares the performance of three kinds of different model structures with respect to their
ability to represent the rainfall runoff process. For the bulk of the study only monsoon season
{(June to October) data were used for calibration as well as validation, the data for the years
1980 and 1981 were used for calibration of ANN modeis. The models were validated for the
year 1982,

ANN Model Identification

The ANN maodel structure s ideally suited for modeling highly non-linear input — output
relationship such as these encountered in the transformation from rainfall fo runoff. The main
objective of the study was to use an ANN to predict the stream flow from available distributed
rainfall and discharge data. Most of the previous work considered rainfall data averaged over
the basin scale; this has the advantage of reducing the number of input variables to the
network.

As reporied by Minns and Hall (1998), rainfall information alone is not sufficient to compute
flow rate, since the state of the basin plays an important role in determining flow rate
behavior. Feor this reason, flow data at certain time intervals before the time of predictions
have been used as additional inpui information to the network. In this way information about
the state of the basin is introduced. The selection of the number or previous flow data as

input to the network was done by slatistical analysis as briefed below.

Standardization of time series

A time series may often contain periodic components that tend to repeat over a period of time
intervals, due to astronomic cycles. The behavior of time series is known as a periodicity,
which means that the statistical characteristics change periodically within the year. In order to
develop any model, the periodic component must be removed from the time series. The

periodic component can be removed as follows.

PET,. -
e - v My

V.1

(3.5)
[8)

where z . is the standardized flow; v is the year; t is the time interval within the year; and

and o, are respectively the population periodic mean and standard deviation of the flow time
series. The standardization method preserves the first two moments (mean, standard
deviation) of the historical series. The sample periodic means and standard deviations can

be estimated from the observed time series for each day of the growing season, and can be
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substituted in equation to obtain the standardized flow series. Salas et.al {1988) mentioned
that the sample estimates of means and standard deviations are subjected to larger errors,
since they are usualiy estimated from a relatively smali number of year's data, as compared
to the population estimates. Also, the use of too many-estimated parameter violates the
principle of statistical parsimony in the number of parameters. In the above time series, for
example, the number of estimated parameters would be 153 means and standard deviations
(one for each day in the monsoon season) plus the model parameters. To reduce the number
of estimated parameter and to obtain better estimates of these parameters, they suggested
the use of a Fourier Series for the estimation of periodic parameters. In the light of this
suggestion, estimates of periodic parameters were obtained in this study by using the Fourier
Series. The method is described as follows:

Let u, represent a periodical statisticai characteristic of the flow series, such as the daily mean

or standard deviation. Also assume u, is a sample estimate of the unknown population

periodic parameter denoted by v.. The population periodic parameter estimate, V. can be
obtained by:

_ h
vo=0+ Z{AjCos(hjrfm) + BjSin(erj-: f‘m):l 1=12,...,0
J=1

(3.6)

where U is the seasonal msan of u, A, B, are the Fourier series coefficients, j is the
harmonic, and h is the total number of harmonics, which is equal to w/2 or (jo -1)/2)
respectively, depending if @ is even or odd. The mean U and the Fourier coefficients A; and
B; can be determined by:

1 1]
u=—>u 37
m§ . 37)
2L . .
A= —ZurCOS(ZZnycfm) forj=1,...,h (3.8)
® LET
and
2 . . .
B; = EZutSm(antz’m) forj=1,...,h (3.9)
1=l

When ¥_ from equation (3.6) is determined considering all the harmonics J=1.....h) (All the

coefficients A; and Bj), V_ is exactly the same as u_ for all the values of t =1,....,u. However,
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this approach will neither reduce the estimation error nor the number of estimated parameter.
To achieve this, smaller number of harmonics h * < h is used, such results are still significant.

For the historical flow series, the daily sample means and standard deviations were
calculated for the monsoon season and are shown in Figures 3.4 and 3.5 respectively. Daily
mean flow was lower at the beginning of the season as compared to that of the mid of the
season and, showed an increasing trend throughout the season. This trend was also found in
the historical flow series {Fig 3.3). The daily standard deviation values for the growing season
showed a larger variation for the first month as compared to the rest of the season. These
sample estimates were utilized to perform the Fourier series analysis as described above fo
abtain an estimate of tha daily means and standard deviations.

As mentioned earlier, the Fourier series fit procedure requires the selection of the number of
the significant harmonics. Salas et. al (1988) provide a procedure for selecting the number of
significant harmonics by plotting the periodogram. However, this procedure added too many
harmonics to the function {(Aboitiz et. al., 1886). Thus the selection of the number of
significant harmonics was done by visual inspection of the resulting function. The number of
selected harmonics, h*, was chosen by plotting the periodic parameters and the Fourier
series function for several values of h*, and inspecting these plots. As climatic conditions
should not change drastically in the basin from day to day over the season, it can be expected
that the population daily mean and standard deviation will be reasenably smooth function over
time. Therefore, the value of h* selected was that which produced a smooth function without
much fluctuations. The Fourier fit of the daily means and standard deviations for different
harmonics considered are presented in Figs 3.6, 3.7 and 3.8.

Table 3.1 Parameters of Fourier series models for daily mean and standard deviation

Parameters Mean Standard deviation
Seasonal mean, 1 330.03 J82.86
Seascnal variance 203.35 355,37
Fourier coefficients
Ay -231.43 -227.54
B, 6.98 53.15
Az -38.96 -B7.42
B, 1.61 -11.62
Ay -44.11 -1141
Bs 16.41 -1.46
Overall explained variance (% of {otal) 67.99 28.59

The Fourier series model with three harmonics fitted well to the periodic mean, except at the
beginning and at the end of the season (Fig 3.7). The values of Fourier coefficients for both
the parameters are depicted in Table 3.1. The model explained about 67% of the variance in
the sample mean series {Table 3.1). In case of the periodic standard deviation, the Fourier
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series fit showed similar fluctuations as that of the periodic standard deviation series, Fig 3.6,
but was only able to explain about 28% of the variance, Table 3.1. However, for both the
mean and standard deviation, the fitted models resulted in smooth functions, which can be
expectad with a large sample size.

Estimates of the periodic mean and standard deviation obtained from the fitted Fourier series
modeis were utilized to obtain the standardized fiow series using equation 3.1. The
standardized flow series is presented in Fig 3.9. The mean and standard deviation of the
resulting standardized series were found to be 0.0 and 1.63 cumec, respectively, which are
sufficiently close to the theoretical values (0.0 and 1.0 respectively).

Identification of the Input Vector

Identification of number of flow series in the input vector is determined by means of sample
auto correlation and partial auto correlation functions. These functions reveal the correlation
structure of the time series and, thus, are helpful in determining the underlying stochastic
process. The theory is based on the assumption of second order stationarity. The
assumption can be explained by letting (z,, zun ) be a pair of flow measurements at t and t+h
in time separated by a vector h (lag). Each z, is a realization of the random variable (2, t
within the time domain of interest) is called a random function and is said to be second order

stationary if:
(i) the expected value E(Z,) exists and is the same within the time domain:
E(Z)) = m, (3.10)
{i) the covariance for each pair of random variables {21, Zi+4) eXists, is the same in time,

and depends on h,
Cov(h) = E[z, z,,,]-m? {3.11)

Stationarity of the covariance implies stationary of the variance.

Autocorrelation function

The autocorrelation function expresses the degree of dependency among neighboring
observations. It is a process of self-comparison expressing the linear correlation between an
equally spaced series and the same series at a specified lag.

Letzy, 24,25, ... Zn.1 be a realization of a stationary stochastic process, then the population

autocorrelation function can be defined as the quotient of the population autocovariance, cov

{z1 Zn ) and variance, var(z,):
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cov(z,,Z,,,)
var(z,)

where z, is the value of variable at the

p(h) = (3.12)

* time, and h is the time lag. Since, the series

analyzed is just one particular realization (out of an infinite number of realizations) of a
stochastic process produced by the underlying probabilistic mechanism, the population
autocorrelation function (Eq 3.12) can be estimated using the simple autocorrelation function,

r{h):

Z- (Zhh - E)(Z| - E)

r(h) =21
Z(Z‘—E)z

t=1

~1<r(h)s1 (3.13)

where Z is the sample mean. The 95% of confidence band for sample autocorrelation
functions given by Anderson and Jenkins, 1970:

=04 =2 2{1423 22 h>q (3.14)
Jn jut

where q is the order of the process and n is the number of observation in the series. The
autocorrelation function is a diagnostic of the moving average process. These processes do
not have any dependence. Therefore, the value of a variable at a given time can be
estimated from a purely randomn series using the weighted sum of the values at previous time

steps.

Partial autocorrelation function

The partial autocorrelation function is another way of representing the time dependence
structure of a series or of a given model. 1t is useful for diagnosing the order of
autoregressive processes. The autcregressive process has a time previous time steps,
Therefore, the idea of autocorrelation, which measures the correlation of variables separated
by assigned lags, can be extended to that of the cormrelation where dependence on the
intermediate terms has been removed. Mathematically, it can be defined as:

b (K)=corm(z,2_, /ZjserrZiyr) (3.15)
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and is the correlation between Z, and z _, excluding the effects of z t4: 242, ooony Ziger. N this
equation k is the distance or time lag measured hetween the measured quantities. In general,
for an autoregressive process of order k, the partial autocorrelation coefficient, ¢, (k),is a

measure of the linear association between p;andp jx (auto correlation function at lag j and F

k) for j < k. It is the k™ autoregressive coefficient and 9, (k), for k =1,2,... , is the partial

autocorreiation function. Lag j autocorrelation for an Auto Regressive [AR(k)] process can be
written as;

P; =0, (k)p,, +¢, (k)p;, +"'+¢k(k)pj-k; j=12,...k
{3.16)

where ¢;(k) is the | auto regressive coefficient of the AR(k} model. Eq 3.16 constitutes the
set of linear equations, which can be written in terms of sample partial auto correlation

functions ¢, (k), as:

1 Lo h | 6(k) I
I, 1 R (9] ¢2(k) = 5 (3.17)
L Gep o1 9 (k) h

Thus, the sample partial auto correiation function can be obtained by solving Eq 3.17. Bartlett
(1946) gave the 95% confidence band for the sample partial auto correlation function as,

1.96
ky=0x = 3.18

where n is the number of observations in a series.

The aute correlation function (ACF) and the corresponding 95% confidence bands from lag 0
to lag 18, (0 to 16 days} were estimated for the standardized flow series using Eq 3.13 and
3.14 respectively. The rosults are shown in Fig 3.10. Lag 0 auto correlation is always is unity
as it is correlation of the variable with itself. However, as the lag increases the correlation
between the variable and the same variable at specified lag decreases, i.e., covariance
decays. The auto correlation function showed significant correlation, at 95% confidence level,
up to lag 7 (7 cay), and thereafter, fell below the confident band. The gradual decaying
pattern of auto correlation exhibits the presence of a dominant auto regressive process.
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Fig 3.11 Partial autocorrelation function of standardized flow series
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Similarly the partial autocorrelation function {PACF) and corresponding 95% confidence were
estimated for lag 0 to lag 16 using eq 3.17 and 3.18 respectively. These are shown in Fig
3.11. The PACF showed significant correlation at lag 4 {4 day) and thereafter fell below the
confidence band. The rapid decaying pattern of the PACF confirms the dominance of auto
regressive process, relative to the moving average process. The above analysis of auto and
partial correlation coefficients suggested incorporating flow values with 3 days lag in the input

vactor to the network.

Number of rainfall patterns in the input vector

The number of previous day's rainfall which influence the flow rate to be predicted was
determined in a trial and error manner. The procedure that was used to identify the number
of rainfall patterns as input to the network is summarized below,

A sample model was selecled by representing stream flow at the present time, 1" as a
function of precipitation at (t-1) and stream flow at t-1, t-2, t-3 as desired from the statisticai

analysis. The modei can be represented as

QY =1(P,,Q,,,Q,,.Q.5) (3.19)

Various ANN configurations were trained and tested using the model. The numbers of
neurons in the hidden layer of BPN were varied from one 1o as many as 25 during training.
Among the network trained, the best-fit network was selected based on the goodness of fit
statislics of training and testing. The precipitation at time (t-2) was added as an additional
input variable to the above model. Hence the model becomes

Q(t)=f(P:-1,Pi -2, Q- 1,Qu-2,Qh-23) (3.20)

The goodness of fit statistics for the present model were computed for training and testing
procedure and compared with those for the best fit model at the previous step. If the
goodness of fit statistics of the present model were significantly different from the previous
model, then the precipitation at time (t-3) was added as another input to the present model,
This procedure was repeated by adding precipitation at previous time periods as input
variables until there was no significant change in model training and testing accuracy based
on the goodness of fit statistics.

Goodness of fit statistics

For each model, fit to the training and testing data was done using popular residual statistics:
the root mean square (RMSE), the Akaike information criterion (Akaike, 1974) and the

30



Bayesian information criteria (Rissanen, 1978). The AIC and BIC are compuled using the
following equation (Shumway, 1988).

2n
AIC = In(RMSE) + i (3.21)

nln{N)
BIC = In(RMSE) +

{3.22)

Notice that while RMSE statistics are expected to progressively improve as more parameters
are added to the model, the AIC and BIC penalize the model for having more parameters and

therefore tend to result in more parsimonious models.

Ancther index used to evaluate the goodness of fit of the model was the efficiency of the
model defined by Nash and Sutcliffe (1970},

2(Q, -Q.Y

Efﬁciency =10~ m

(3.23)

where, Q, Q. are the observed and computed valuss of flow and C_) is the mean flow over

the period.

The model efficiency can be used to evaluate the capability of the mode! in predicting the next
day river flow, different from mean value, which is assumed to be the prediction, however
available, in the worst case. The resulls of the above analysis are presented in the next

chapter.
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Chapter 4

Results and Discussion

The main objective of the study was to develop a rainfall runoff model for the Baitarani river
basin, Orissa, which would be able to forecast the stream flow using historic time series data
of rainfall and runoff. A critical examination of the research work in this field suggested that
ANN aigorithms were capable of modelling the rainfall-runoff relationship due to its ability to
generalize the patterns in noisy and ambiguous input data without a priori knowledge of
probability distributions. Therefore an ANN approach has been employed in the study, as
described in detail in chapter 3. The details of the basin and its characteristics are presented
in chapter 2. The present chapter deals with the result pertaining to the work as the
performance of the models considered, inter comparison of their performance, and relative
performance of the best-fit rmodel over existing models used in the basin.

Identification of the input vector to the network

To create any rainfall-runoff model by system theoretic approach, such as ANN, it is required
to determine from the available historical sequences of rainfall and runoff data, the choice of
how many and which delayed runoff patterns and rainfall patterns affect the next output. This
is one of the complexities which make the forecast more difficult than the simple straight
regression analysis. Conducting auto and partial correlation analysis of the river flow and
determining the lags that have significant effect on the next flow can contain this complication.
In the present study, this anaiysis was carried out, and is described in the chapter 3.
However, the number of previous rainfall pattern that are having significant effect on the next
day flow has been identified in a trial and error procedure, as described in the methaodology
(chapter 3).

The study considered two ANN structures based on the algorithm with which it learns the
patterns. The two algorithms considsred are back error propagation {usually called as back
propagation network or BPN) and radial basis function network. The details of functioning of
these two algorithms are described in chapter 3. While determining the input vector to the
network, both these algorithms were considered. The trial started with presenting input vector
to the networks considered, which consisted of one previous day rainfall value and estimating
the goodness of fit statistics. The trial was continued with adding one more day (reinfall at lag
of two days) in the input vector. The performance of the new input vectors was examined
based on the statistical indices.
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An abstract of the effect of rainfall lags in input vector is presented in Table 1. The table
contains the goodness of fit statistics of tiwee candidate models, which are described in detail
betow. These candidate models were selected based on their performance as examined by
the goodness of fit statistics.

Table 4.1 Goodness of fit statistics for effect of number of previous day rainfall on input vector

RMSE Efficiency
Training Validation  Training Validat
ion
1980 1981 1882 1980 1981 1982
BPN with 6 P(t-1) 1.82E-02 2.78E-02 6.76E-02 81.63 9196 30.38
Neurons P(t-1, .t-5) 1.25E-02 121E-02 4.26E-02 91.38 9847 7235
Radial Basis  P{t-1) 1.87E-03 000 6.52E-02 99.81 99.26 3532
Network P(t-1, .t-§) 5.76E-03 6.06E-03 2.20E-02 98.16 99.62 92.64
BPN with 12 P(t-1) 1.72E-02 2.66E-02 5.73E-02 83.53 92.65 50.04
Neurons P(t-1, ..t-5) 9.59E-03 9.11E-03 4.86E-02 9490 99.14 6£4.08

Note: P{t-1) corresponds to input vector with one previous day rainfall
P(t-1,...t-5) couresponds to input vector with 5 previous day rainfall

The RMSE error has improved when the number of rainfall patterns in the input vector to the
network increased from one to five, as can be seen from Table 4.1. Though this is the case
with all models considered (during training as well as validation), there is a slight deterioration
in the case of radial basis network during training. However, the RMSE value has been
improved during validation. This may be due to the nature of the radiat basis function, that the
network reproduces the fraining pattern with least error always. The lower value of the RMSE
in the case with only one previous day rainfall pattern in the input vector may be due to less

Rumber of variables in the pattern. The first case considered 4 variables in the pattern, while
the second considered eight.

A similar trend is observed in the efficiency of the model tao (Table 4.1). The table presents
the calculated efficiency based on the normal values. All the models performed to a
satisfactory level during training, as expected with any ANN architecture, but showed vide
variations in the performance during validation. The radial basis network improved the
efficiency from 35.32% to 92.15% with change in the input pattern during vaiidation. The other
models too performed in a similar manner during validation. These results lead to the
conclusion that the number of previous rainfall data has a significant effect in the model
performance. The experiment resulted in the conclusion that an input vector with 1,2,3.4 and
5 day lags can produce the river flow patterns in a satisfactory manner.

Back propagation network
identifying the number of neurons in the hidden layer is another complicated task in finalizing
the network architecture. This is commonly done by trial and error evaluation. The number of
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hidden layers in the network was fixed to one as reported by Sridhar (1996). He, after
experimenting with various combinations of ANN structure, reported that increasing the
number of hidden layer to two or more have no significant effect in the performance of the
network. The experiment starts with only one neuron in the hidden layer and increasing it by
one every time after training the network and computing the goodness of fit statistics. The
abstract of the goodness of fit statistics, on the effect of number of neurons in the hidden layer
is presented in Table 4.2. The final selection of the number of neurons is made based on the
statistical indices considered. '

_Table 4.2 Goodness of fit statistics for the effect of number of neurens in the hidden

layer
RMSE Efficiency
Number of neurons in Training Validation Training Validation
the hidden iayer 1980 1981 1982 1980 1981 1982
6 1.82E-02 2.78E-02 6.76E-02 8163 9196 30.38
12 1.72E-02 2.66E-02 573E-02 83.53 9265 50.04
25 1.35E-02 1.70E-02 6.2BE-02 89.97 96.99 39.94

From Table 4.2, it can be observed that the RMSE error gets reduced as the number neurons
in the hidden layer increases. During the experiment, it was observed that the improvement in
RMSE value was not significant after 12 number of neurons in the hidden layer. The efficiency
of all architecture was similar during training, but the performance got worsened during
validation. The AIC and BIC values were considered for selecting the best-fit model from the
trail runs. These values were computed using equation 3.21 and 3.22 respectively. Based on
these criteria, a model with minimum value of AIC and BIC are to be selected. The AIC and
BIC values for the models are presented in Table 4.3.

Table 4.3 The AIC and BIC vaiues for selecting best fit model with different number of
neurong in the hiddan layer
AlC BIC
Number of neurons in the Training validation Training Validation
hidden layer

1980 1981 1982 1980 1981 1982
6 -3.53638 -3.12642 -2.23612 -2.83075 -2.43318 -1.54288
12 -3.1883 -2.77881 -2.00981 -1.87785 -1.49137 .0.72237
25 -2.06376 -2.37541 -1,06825 0.05713 0.199467 1.50863

In the present study, two candidate models were selecied based on their performance in
representing the R-R process. The trial and error procedure resulted in selecting two
candidate BPN models, one with 6 number of neurons in the hidden layer and the other with
12 number neurons (these models are represented as BPN 6N and BPN 12 N respectively in
this report).
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Both these models were trained and validated. The recorded daily values of rainfall and
straam flow for the years 1980 and 1981 were used for training. The data for the year 1982
was used for validating the model. The input data was normalized using the following function
{Romesburg, 1984):

x.—C ..
Zij PP I (4.1)
Cmaxj - Cminj
where Cpay and Criy are the maximum and minimum of | variable in all cbservations. The
main reason for standardizing the data matrix is that the variables are usually measured in
different units. By standardizing the variables and recasting them in dimensionless units, the

arbitrary effect of similarity between objects are removed.

The resulted hydrograph from both the models are presented in Fig 4.1 and 4.2 respectively
for BPN 6N and BPN 12N respectively. A visual inspection of the observed and computed
hydrograph supports the capability of ANN algorithm to represent the rainfall runoff
transformation. However, the effectiveness of each model is to be understood through
statistical analysis of the resulted hydrograph, and is described later in this chapter.

Radial basis function network

The trial and error evaluation of the network performance resulted in one candidate model
with similar input vector as to that for BPN model (ihe modei is represented by RBF in this
report). The relative performance of the input vector variations can be examined, as exiracted
in Table 4.1. The optimum network structure was achieved by experimenting with various
network parameters of the algorithm. This model was also trained using the data for the year
1980 and 1881, and validated for the year 1982.

The resulting hydrograph during training and validation are plotted in Fig 4.3. A simple visual
analysis reveals that the model was able to perform satisfactorily, and is further justified by
statistical analysis.

Inter-comparison of the candidate models
The performance of the three identified models for training as well as validation periods are

critically examined using various statistical indices and are reported in Table 3.

The RMSE statistic measures the residual variance; the optimal value is 0.0. All the three
models tend to have very small RMSE during training. The value of RMSE is found slightly
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deteriorating during validation, for all the models. However, it is wosth noting that the errors
are fairly small. For RBF network, the RMSE during validation is about 0.02 normalized units,
which corresponds to 79 cumecs. The distribution of error over different patterns was also
calculated, using the index Npyse. The values of Nause indicated that, more than 80
percentage of the patterns was reproduced with error less than RMSE. The BPN 6N has

worst RMSE during calibration as well as validation. On average, RBF model performed best
as measurad by this statistic.

Table 4.4 Goodness of fit statistics for the candidate models

Correlation RMSE
Training Valldation Training Valigation
1980 1981 1982 1980 1981 1682
BPN 6N 0.94 0.99 0.90 1.25E-02 1.21E-02 4.26E-01
RBF 089 099 086 5.76E-02 6.06E-03 2.20E-02

BPN 12N 0.96 0.99 072  9.59E-02 9.11E-03 4.86E-02

% Error in Maximum flood Efficiency
Training Validation Training Validation
1980 1981 1982 1980 1981 1982
BPN 6N 0.06 0.20 -61.05 88.04 97.11 56.64
RBF 000 0.00 5.14 28.17 29.57 g92.15

BPN 12N -0.03 0.36 1.74 92.72 98.46 41.71

The percentage error in maximum flow (%MF)} measured the percent error in matching the
maximum flow of the data record; 0.0 is the best, positive values indicates overestimation,
and negative values indicate underestimation. During calibration, all the three models match
the peak flow very well, but during validation the performance deteriorates in every case. The
worst deterioration is for BPN 6N model (0.0 to —61.06 %), while RBF model slightly over
estimated the peak flow during training (5%). Howaver, the performance of the BPN 12N was

the best among three during validation, and could be employed for flood estimation compared
to other models.

The correlation statistic measured the linear correlation between the observad and simulated
flows; the optimal value is 1.0. The correlation coefficient {CORR) is worse {smaller} during

validation than during training for all the models, as was expected. The RBF model showed
consistent correlation throughout the training and testing.

The efficiency of the model as defined by Nash-Sutcliffe criteria (equation 3.23) is a measure

of the performance of the model in predicting the output values. A value of 90% and above
indicates very satisfactory performance, a value in the range of 80-90% indicates fairly good
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performance, and a value below 80% indicates an unsatisfactory fit (Shamseldin, 1997).
According to this statistic, all the model predictions were extremely good during training.
However, both the BPN models failed miserably during validation (nearly 50% efficiency). The
RBF maintained the efficiency during validation too.

The results obtained from all the modeis during training and testing are plotted in a Fig. 4.4 in
a dispersion diagram. The statistical index %MF, considered only the peak flow in the season,
while the scatter diagramconsidered all the high fiows and a better evaluation could be made
based on this diagram. Reduced scatter confirms that good results have been obtained.
However, the prediction of high flows {during training as well as testing) was not to the mark
in all the models, though RBF was better among the three. The performance of the BPN 6N
during the year 1980 was not satisfactory.

All the above analysis shows that a radial basis function network was able to model the
rainfall-runoff process in the Baitarani river basin in a reasonably accurate manner. However,
in forecasting of flood peaks BPN 12N is superior to RBF.

Comparison of best fit model with other models in use
From the reported analysis, the RBF mode! was selected as the best fit model among all the

three candidate models considered, and ils performance was evaluated with that of the other
models in use in the basin.

In one of the pioneering studies in the basin, the Orissa Water Planning Organization
(OWPO) of the Government of Orissa has conducted a regression analysis on 20 years of
monthly rainfall-runoff data. The reported regression models were employed in the present
study to compare the relative performance of R8F model and regression model. The OWPOQ
has recently employed the “Sacramento rainfall-runoff model” in the Baitarani river basin for

water resources planning (the details of these two studies can be obtained from OWPQ,
1993).

in the present study, the results as reported by OWPO has been taken directly, without any
cross checks for validity, so as to compare the relalive performance of these models with RBF
model developed in this study. The reported results from OWPO were in the form of monthly
flows in mm. To make a direct comparison, the RBF simulated daily flows have been summed
up over the months and transformed into similar units. The relative performance of these
models is depicted in Fig 4.5. The figure shows values of monthly flows for the year 1980 to
1982. The figure clearly indicates the failure of Sacramento model (note that no analysis was
carried out by the authors of this report to check the accuracy of the reported values).
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Fig 4.5 Comparison of ANN model performance with others
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However, the fitted regression equations performed better than the Sacramento model. In all
the years, the relative performance of the RBF model was superior to others. Hence it can be
concluded that use of an RBF mode! for the water resources management in the basin may
result in better utilization of the resources.
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Chapter 5
Summary and Conclusions

A research study has been conducted to develop a rainfall-runoff model for the Baitarani river
basin, Orissa. A detailed review of the research work in the area of interest revealed that the
approach of neural computations was very effective in developing the required model, due to its
various advantages. Accordingly, three candidate models based on ANN architecture were
developed for the study area, o represent rainfall-runoff transformation.

All the three model's architecture was determined based on a trial and error procedure and
examining various goodness of fit statistics. An auto correlation and partial auto correlation
analysis of the standardised daily flow series suggested that the flow at time ‘t' was highly
correlated to previous three days flows viz (Qi.4,Qv2, Qug). These parameters were included in the
input vector of the network, apart from 5 days rainfall series prior to the day, at which the flow was
to be predicted. The number of rainfall patterns in the input vector was finalised by trial and error
procedure.

Statistical analysis was done on the performance of each model in estimating the runoff. The
study revealed that an ANN with radial basis function algorithm was able to model the R-R
fransformation more accurately than a back propagation network. However, for estimation of
peak flows a BPN with 12 neurons in the hidden layer was found efficient. The results from the
RBF model were compared with the results of existing models such as Sacramento mode! and
regression equations developed, and the performance of the RBF model was found supetior to
others.

Hence it was concluded that the Radial Basis Function network model developed for rainfall-
runoff process in the Baitarani river basin might be employed for water resources planning. While
such a model is not intended as a substitute for a physically based modael, it can provide a viable
alternative when the hydrologic application requires that an accurate forecast of stream flow be
provided using only the available input and output time series data, and with relatively little
conceptual understanding of the hydrologic dynamics of the particular basin under investigation.
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