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PREFACE

Rainfall is the principal natural source of recharge to the aquifers. Quantification of
the rate of this natural recharge is a basic pre-requisite for efficient management of the
groundwater resource. It is particularly vital in a coastal aquifer where the draft in excess
%f this natural recharge rate may result in withdrawal from storage, leading to declining
water table levels and adverse cffects including adverse salt balance and sea water
intrusion. However, the natural phenomena of rainfal! recharge which is a function ofa
number of hydrological, meteorological and geological factors is very complex to study
and analyze. The recharge from rainfall varies both in space and time. A number of
methods for estimation of rainfall recharge are available which mainly include the
empirical formulas under specific field conditions, experimental studies, water table
fluctuation method, water balance approach, and inverse modeiling (determination of the

recharge necessary to maintain the ground water levels).

Among the above methods, the inverse modelling is comparatively a new
technique of estimation of recharge. It is called an ‘Inverse Modelling” because, confrary
to the ‘Forward or Direct Modelling’, where recharge is postulated known and hydranlic
heads computed, it is the recharge estimate which is computed from field measurements of
hydraulic heads. Though, a few standard software like MODINV, MODFLOWP, PMWIN
etc. are available now a days for tackling the inverse problem, the recharge estimation by

this method has not yet achieved the share of attention it deserves.

The present study brings out the application of MODINV (MODular INVerse

model) for estimation of distributed rainfall recharge in different zones of 2 coastal aquifer

=

clta in Andhra Pradesh. The study has been carried out by Sri J.V.

c
Tyagi, Scientist ‘C* as a part of the annual work programme of the ‘Groundwater
Modelling and Conjunctive Use Division’ for the year 1999-2000. During the course of
the study, Dr. Sudhir Kumar, Scientist ‘'C” also provided the logistic and the technical
support.

DIRECTOR, NTH
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ABSTRACT

The present study focusses attention on the use of inverse modelling technique for
estimation of rainfall recharge in a coastal aquifer. MODINV (MODular INVerse model)
which is a software for parameter optimisation of 3D Ground Water Flow Model,
MODFLOW, is applied to Central Godavari Delta in Andhra Pradesh to estimate the

distributed rainfall recharge during monsoon season,

The model is formulated based on the available information on the physical and
hydrogeological framework of the study area. A number of recharge zones are defined in
the model to take care of the spatial variation of recharge. The model is calibrated for the
transient conditions during non-monsoon period of 1985 when the recharge takes place
solely due to return flow of applied irrigation, the quantity of which is estimated before
hand with the available data. The calibrated model is then used to optimize the recharge
during different stress periods of monsoon season of 1985. The recharge from rainfall is
computed by subtracting the estimated quantities of recharge due to return fiow from the
total mode] recharge.

On a distributed basis, the minfall-recharge coefficient in the lower, middle and
upper reaches of the study delta is found to vary from 0.I1 to 0.25. The recharge

coefficient as calculated on lumped basis works out to 0.1717 for the study area.

iii



1.0 INTRODUCTION

Groundwater is one of the most important and widely distributed resources of the
earth. In view of the rapidly expanding wban, industrial and agricultural water
requirements in many areas and the normally associated critical unreliability of surface
water supplies, ground water exploration and its use has assumed a fundamental
importance for logical economic development. Groundwater development forms the bulk
of irrigation development programmes in most of the states of India. For planned
development of groundwater resources, however, it becomes essential to quantify the

groundwater resources of different administrative units/basins on a realistic basis. Since

groundwater structures. Since rainfall is the principal natural source of groundwater
recharge, quantification of the rate of this natural recharge is a basic prerequisite for
efficient groundwater resource management. It becomes particularly vital in a coastal
aquifer where the draft in excess of this natural rate of recharge can induce the sea water

intrusion into the fresh water aquifers.

Rainfall recharge which is a small fraction of total rainfajl primarily depends upon
a number of factors, e.g. soil moisture characteristics, topography, vegetal cover, soil
moisture deficiency, thickness of soil at surface, depth to water table, intensity and
duration of rainfall, and other meteorological factors, Quantification of rainfall recharge is,
thus, one of the most difficult task in the evaluation of ground water resource. Estimates,

by whatever method, are normally, and almost inevitably, subject to large error.

Basically, the principal methods of recharge estimation can be grouped into

following two categories ;

(a) ‘from above’ — by analysis of water moving downwards through the unsaturated
Zone of soil, e.g. lysimeter measurements, tracers, soil moisture budget models and

one dimensional soil water flow models.



(b)  ‘from below’- by inferring the recharge from water table changes, e.g. water level
fluctuation method, ground water balance approach, inverse modelling

(determination of the recharge necessary to maintain the groundwater levels).

The approach of inverse modelling was considered by Freeze (1983) to be the most
“straightforward way of estimating ground water recharge”. It is called an ‘Inverse
Modelling’ because, contrary to the ‘Forward or Direct Modelling’, where recharge is
postulated known and hydraulic heads computed, it is the recharge estimate which is
computed from field measurements of hydraulic heads.

Though, a few standard software like MODINV, MODFLOWP (Parameter
estimation), PMWIN etc. are available now a days for tackling the inverse problem, the
recharge estimation by this method has not yet achieved the share of attention it deserves.
The present study is, therefore, carried out to estimate the rainfall recharge through the
technique of inverse modelling. The study is taken up in 2 coastal aquifer of Central
Godavari Delta of Andhra Pradesh, MODINV (MODular INVerse model) which is a
software for parameter optimisation of MODFLOW has been used to optimize the
recharge values in different zones of the study area. The model is calibrated during non-
monsoon season when only field irrigation is expected to recharge the ground water
system. Using the calibrated model, the rainfall recharge is estimated during the monsoon

season for different zones of the study arca



2.0 PROBLEM DEFINITION

As stated in previous section, it is proposed to estimate the groundwater recharge
from rainfall and its spatial variation over the Central Godavari delta in Andhra Pradesh
using the techmique of inverse ground water modelling. MODINV, a parameter
optimization software for MODFLOW, is proposed to be used for optimization of
recharge in the study area. Based on the available groundwater level data, the model
would be calibrated during non-monsoon season. The calibrated mode! will then be used

to estimate the zone-wise recharge during the monsoon season.



3.0 STUDY AREA

3.1 General

The arca selected for the study constitutes a part of the delta system of river
Godavari in Andhra Pradesh. The River Godavari is one of the largest perennial rivers of
India and flows from west to east across ihe peninsula. Towards the end of its course, it
pierces the Eastern Ghats and flows into the plains between the Ghats and the sea. Upte
Dowleswaram in East Godavari Dist. of Andhra Pradesh, the river is known as Akhanda
Godavari. Below this point the river bifurcates into two branches, the Gowthami Gedavari
being the eastern and the Vasista Godavari being the western branch. In between the two
vial depesits and is known as the Central Godavari Delta. As the
western branch of the river i.e. Vasista again bifurcates in its lower reach at Gannavaram
into two branches, the Central Godavari deita is also divided into two parts. Several small

islands are also formed due to a number of sireamlets of rivers Gowthami and Vasishta.
3.2 Location and Areal Extent

The study area lies in East Godavari Dist. of Andhra Pradesh State and forms a
part of Central Godavari Delta with its hydrological boundaries as river Gowthami
Godavari in the east, river Vasistha Godavari and its branch Vainateya in the west and the
Bay of Bengal in the south. With a view to having fairly clear boundaries, the clear area
between the nearest streams of river Gowthami and Vasista has been selected for the study
and as such the island Polavaram and other small islands have been omitted.
Geographically, the study area is located between 16°25° to 16°55° N latitude and 81°44°
to 82°15" E longitude and is shown in Fig.3.1. The total geographical area under study
measures to 825 sq.kms, covering fully or partly the following revenue mandals.
{1).Amalapuram, (2) Ambajipeta, (3) Allavaram, (4) Atreyapuram, (5) Inavilli, (6)

Katrenikona, (7) Kothapeta, (8) Mummidivaram, (9) Ravulapalem, (10) Uppalaguptam,

(11) P.Gannavaram.
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3.3 Tcpography and Soils

The study area consists of alluvial plain formed by river Godavari, It has a very
gentle land slope towards the sea with elevations varying from about 10 m at upper
teaches to about 1 m near the coast, The coast [ine along the study area measures to about
40 km, The topographical map of the study area is given in Fig.3.2. Texturally, a major
part of the study area consists of sandy loams and sandy clay loams. The silty soils which
are very deep, medium textured with fine loamy sub soils are located all along the river
Godavari as a recent river deposits. The very deep, coarse textured soils with sandy sub

soils representing the coastal sand are also found along the sea.
3.4 Ciimate and Rainfall

Being the ceastal region, the climate of the study area is comparatively equitable.
Though it is very warm in April and June with a maximum temperature of about 39°C, it
is never oppressive during the rest of the year. The mean minimum temperature during the
two coldest months i.e, December and January for the E. G. Dist. varies from 19°C to
21°C, while the mean maximum temperature varies from 27° C to 29°C. The mean
minimum temperature during April te June varies from 26°C to 29°C with mean
maximum femperature ranging from 35°C to 37°C., The study area has three distinctive
mousoon seasons ie. South-West monsoon period from June to Sept., North-East
monsoon period from oct. to Feb., and West monsocon period from March to May. More
than half of the annual rainfall is brought by the South-West monsoon, while the large
portion of the rest occur in October and November. The normal annual rainfall of the E.G.
Dist is 1142 mm. The rain gauge stations in and arourd the study area and their Thiessen

polygons as used in the study are shown in Fig. 3.3.
3.5 Irrigation and Drainage

The Godavari delta Irrigation System is one of the oldest and most important
irrigation systems in the state of Andhra Pradesh playing a vital role in the rice economy

of India for over a century. The entire study area is under the command of Godavari



Central Canal system and is served by main canal, three branch canals, one distributary
and a large number of irrigation channels. The canal network in the study area is shown in
Fig. 3.4. The canal system remains operational for 11 months with one month closure
period during April-May. Besides, a good number of shallow tube-wells and filter points
also exist in the study area. The entire area under paddy which is the major crop in both
the seasons is irrigated by canal water. Other important crops like sugarcane, banana and
vegetables are partly irrigated by tube-wells and partly by canal water. The study area is
served by a number of major, medium and minor drains to remove the surplus water from
the fields that gets accumulated especially during the sputh-west monsoon when the area is
subject to incidence of heavy and wide spread rainfall. The ground fall on an average is
about 1/5000 in head reaches and 1/7500 in the lower reaches of the study area.
Conseguently, the out-fall of the drainage from the irrigated area, through the network of
surface drains, is rather slow especially in the lower reaches resulting in drainage

problems of sev=re nature.

36 Agriculture

From agriculture point of view, the alluvial soils are considered to be the most
fertile lands and paddy being the major crop of the Godavari delta system, it is known as
the rice bowl of Andhra Pradesh. The study area (ie. part of the delta system) is also
predominantly a rice growing area in both kharif and rabi seasons. Other important crops
in the study area include coconut, sugarcane, banana, turmeric and vegetables. The crops
like maize, jowar, bajra etc. are found in patches only. There are mainly two cropping
seasons namely kkarif and rabi. The kharif season commences from 1* June when
irrigation water is released through the canal system and extends upto November. The rabi
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the succeeding year. The n ut

68% of total geographical area under study. The gross cropped area is about 95000 ha of
which about 75% is occupied by paddy, 15% by coconut trees and the remaining by other
crops. The area under other miscellaneous deep-rooted trees is almost negligible as there

are no forests in the study area.



3.7 Sea Water Intrusion

The chemical analysis of ground water samples collected from observation wells
spread over the study area was carried out. The analysis indicates that the T.D.S. values as
high as 2000 are found in the wells located near the two arms of river Godavari, while a
reducing trend in T.D.S. values is observed in the wells located away from the rivers.
Comparatively low values of T.D.S. are also observed in the welis located near the sea.
The groundwater table data analysis reveals that the flow takes place from the aquifer
towards the sea. This indicates that there is no sea water intrusion direcily from the sca
into the aquifers due to reversal of gradients. However, in the case of rivers, the
groundwater table contours indicate that the flow takes place from the rivers into the
aquifer. During high tides in pre-monsoon as well as post-monsoon period, sea water
rushes through the mouth of the river, upstream for distances upto 40 to 50 km. It takes 4
few days for this sea bore to recede back to the sea. During this period salt water infiltratcs

into the groundwater aquifer from the river banks and bed.

3.8 Data Availability

A variety of data on hydrological, meteorological and geological aspects of the
study area were collected from different Depts. Field visits were also undertaken to gather
the necessary information. These data were processed and made use of in the study. A
summary of the availabie data and information is presented below:

Topographical map of the study area (Fig.3.2)

Map showing rain gauge stations and their Thiessen polygons(Fig.3.3)
Map showing canal network in the study area (Fig.3.4)

Map showing location of observation wells (Fig.3.5)

Monthly rainfall data of rain gauge stations

Monthly ground water levels in observations wells

Canal discharge data

Length, cross-sections and other design details of main canal, branch canal and
distributaries and their command areas.

9. Number of wells/tube-wells in the study area

10.  Stage of the rivers

11.  Land use pattern data

12.  Cropping pattern data

13.  Data on geology and aquifer characteristics

14.  Data on potential evapotranspiration, and other climatic data

15,  Groundwater quality data for the study area.
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FIG. 3.2 : TOPOGRAPHICAL MAP OF STUDY AREA
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4.0 DESCRIPTION OF MODINV

4.1 An Overview

The MODINV suite of software comprises a number of programs, built to enhance
the usefulness of the popular USGS finite difference flow model, MODFLOW. The
MODINV is basically a parameter optimisation program for MODFLOW. Using this
software, the specific values taken by any parameter type that MODFLOW can read as a
2-dimensional data array can be optimised such that model-generated heads are as well
matched as possible to those observed in the field. Sicady state and transient, single and
multi-layer, confined and unconfined models can all be calibrated in this manner. As well
as providing optimised parameter values, MODINV indicates the reliability of these
aquifer parameter value estimates, given the observed head data that is used in calibration.
Parameter values car. be fixed, grouped or transformed to enhance optimisation stability

and efficiency.

42 MODINV Software

Model parameter (or input) estimation is often referred to as the "inverse problem”
to distinguish it from the "forward problem”. The latter refers simply to the process of
mathematical modelling and the means by which this is achieved for different physical
systems. For groundwater modelting, MODFLOW is a program that carries out forward
modelling using the finite-difference method; aquifer parameters and inputs are provided
by the user and model outputs (heads or drawdowns) are calculated. On the other hand,
when model outputs are known and an attempt is made to solve for one or a number of the

model parameters or inputs, then inverse modelling is being attempted.

Here, both aquifer input (eg. recharge) and physical properties (eg. transmissivity)
will together be referred to as model "parameters" for the sake of simplicity of expression.
Table-4.1 provides a list of such parameter types. As discussed latter, on the assumption
that some of the model parameters are known, we are attempting fo ascertain the values of
the other parameters on the basis of a set of water level or head measurements taken at a

number of boresites at one or a number of times.
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Table 4.1 : Twe Dimensional Real Arrays That Can Serve as Parameter Types.

MODFLOW | Array Remarks
package

BCF Primary storage capacity (all layers)
Secondary storage capacity (ail layers)
Transmissivity (all layers)
Hydraulic conductivity (all layers)
Layer bottom elevation (all layers)
Layer top elevation ' (all layers)
Vertical hydraulic conductivity/thickness (all layers but bottom)

RCH Recharge rate (all stress periods )

EVT Surface elevation {all stress periods )
Maximum EVT rate (all stress periods )
EVT extinction depth (all stress periods )

Fundamental to the operation of most inverse modelling algorithms is an ability to
calculate model outputs using current estimates of model parameters, i.e., to carry out
routine solutions of the forward problem. These model outputs are compared with
measurements (in the present case through a weighted sum of squared differences
criterion) and the parameters are then adjusted to obtain a more favourable comparison.
MODINV uses MODFLOW as its forward processor. However as field-observed head
data exist at only a discrete number of bores, the two-dimensional head arrays constituting
MODFLOW's output are interpolated to yield MODFLOW-predicted heads at these
boresites; it is these interpolated head values that are compared with historical or steady-

L 1

state head data, and it is the weighted squared sum of the differences between these two
sets of heads which is minimized. Hence the total forward model can be considered to be
MODFLOW plus the two-dimensional head array interpolation procedure; the forward
model outputs are then the heads at boresites whose positions and layer numbers are

nominated by the user.
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4.2.1 The Mathematical Modei

The purpose of a mathematical model is to predict the behaviour of a system as it
responds to changing conditions. if we consider these conditions as inputs to the model,
then once we know the parameters of the model, it is a simple matter to obtain model
outputs for as many different inputs as we like. For a groundwater model the inputs are
normally considered to be the sources (or sinks) of water (for example recharge, EVT rate,
well pumping rate, etc) while the parameters are aquifer physical properties such as
transmissivity and storage capacity. Boundary conditions such as lateral mode! inflow rate
or constant head levels are often considered to be part-of the model itself, being neither an
input nor a parameter, the latter term normally referring to something which can be
adjusted at the model calibration stage. The model outputs are the heads or water levels in

the aquifer
The partial differentia! equation describing groundwater flow is

oh, & oh F)
— - sy — of1
(Ky—J a(K”a) S,a‘ (1)

I7) oh
E(Kn —) + ay

2
ax" oy
where,

KxoKyy Kz @ hydraulic conductivities along the major axes

h : potentiometric head

W : volumetric flux per unit volume and represents
sources and or sinks

S : is the specific storage of the aquifer

{ : time

Considering the above equation together with the given boundary conditions as the
model, then the parameters (Kyx, Kyy, Koz and ) are the model, "distributed”, parameters.
The fact that they are distributed means that they require for their complete description a
knowledge of their value at every point within the three-dimensional space occupied by
the aquifer. That is, as functions of position, they should be represented as Kyu(X,y.2),
K,{x,y,2), etc. Model inputs are functions of time as well as location, and hence can be

written as W(x,y,z,\). Similarly, the model output, h, is both time and space dependent and

15



can likewise be represented as h{x,y,zt). Hence equation 1 can be represented

conceptually by the following equation:
M(Kyxs Ky Kz, 85 W)=h w(2)

where the semi-colon in the bracketed term above separates the model parameters (time-
independent), from the inputs {time-dependent). Again boundary conditions, (though they

may be time-dependent) are assumed to be part of the model, and hence the "M" term.

To model a natural system, simplifying assumptions are made to all terms of
equation (2). Spatial discretization of the M operator, through which a differential
equation is converted to a matrix equation, is fully described in the MODFLOW manual.
To construct a parameter estimation algerithm on which to base MODINY, some further
simplifications are made. In particular, it is assumed that all distributed parameters are
"piecewise constant”, ie. they are constant within each of a number of zones which, when
put together, cover the area of the model. These zones of constant parameter value do not
necessarily coincide for each different parameter type; however each parameter type now
requires for its complete description only a few numbers, these representing the values that

the parameter takes within each zone of constancy for that parameter.

Model inputs, W, are subdivided by MODFLOW into two types, viz. those that are
distributed across the mesh (recharge and EVT) and those that take on “point” or "line”
distributions (well recharge, drainage, river, genera! head boundary). For the first group
MODFLOW requires either a two-dimensional matrix of inputs (recharge) or a number of
two-dimensional matrices by which the source or sink two-dimensional matrix can be
caleulated (EVT); for the second group MODFLOW requires either the model input, or
the means by which it can be calculated, at each pertinent cell, the latter being nominated
specifically by row, column and layer number. MODELOW assumes that each input is
piecewise constant in the time domain, the period of constancy being referred to as a
"stress period”. For recharge and EVT, let us also assumne that the recharge rate and the
properties that determine the EVT rate can be represented, like the model parameters, by a
limited number of spatial zones within each of which the recharge or a particular EVT
characteristic is constant for a given stress period. These zones do not need to coincide for

different stress periods or for each of the three different EVT characteristics and recharge.
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Let us now introduce a further simplification by acknowledging that, when
calibrating the aquifer, we only have field measurements to compare with the model
output (head or water level) at a finite, relatively small, number of points, these being the
locations of bores within the model area. Furthermore these borehole heads are known at
only one or a finite number of times, corresponding to field sampling episodes. Assuming
that we have a means by which a MODFLOW head array output car be interpolated onto
these same boresites at specific times corresponding to the measurement times, our model
output can be considered as a number of sequences of real numbers, each sequence
providing a time series of water levels or heads at a particular bore, Forcing these model
heads to coincide as closcly as possible with the measiired heads at the measurement times
is the basis for model calibration. Of course in the steady-state case, there is only one

observed head and one model head for each bore.
After making all these assumptions, equation {2) can be rewritten
M@ =h «(3)
where p is finite-dimensional vector of numbers representing all of
i. the values taken by each of the mode! parameters within each of their respective

constant-parameter zones.

i. the values taken by recharge rate within each of its constant-recharge zones for

each siress period,

iii. the values taken by each of the three parameters determining EVT in each of their

respective constant-value zones for each stress period, and

iv. the values taken by the coefficients that determine single cell model inputs, (ie.
rivers, drains, wells and general head boundaries) in each of the model cells that

are subject to such inputs for each stress period.

h is also a finite dimensional vector. It consists of head (ie. model output) values at
specific boresites at times for which a model output has been requested. If p contains N
elements and h contains M elements, then M is a continuous vector function from

N-dimensional space to M-dimensional space.
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M as written in equation (3) does not have an inverse; i.e., if h is known it does not
follow that p can be determined. This is easily demonstrated by considering a model that
is subject to both recharge and EVT. If the former is increased everywhere while the latter
is decreased by the same amount, the model's output heads will be unchanged. Hence,
given h, it is impossible to determine boih recharge and the EVT coefficients. With other
model parameters, such as the transmissivity distribution, aiso having a strong effect on h,
it is easy to see that there are many different p's which will produce the same, or almost
the same, h. Some of these different p's can be obtained from any given p which satisfies
(3) by varying some of its elements in such a way that the effect of changing one or a
number of these elements is balanced exactly (or almost exactly) by simultaneously
changing one or a number of its other elements in a certain manner. This is an example of

parameter correlation, of which more will be said later.

So it is obvious that if we are going to use measured aguifer heads as the basis for
model calibration, it will be necessary to assume that some elements of p are known. We
will then be left with the problem of estimating the remaining elements, for which we may
or may not be able to obtain a solution, depending on the degree of parameter correlation
that remains. If parameter correlation is still too high, a numerical inversion algorithm will
not converge to a solution or, at best, will show signs of instability. This is not the fault of
the algorithm, for it cannot answer an impossible question. In general, the fewer the
parameter types for which you require estimates, and.the fewer constant-parameter-value
sub-areas for those parameter types, the more likely is the algorithm to perform well. Of
course, with fewer parameter sub-areas the degree of fit between model and observed
heads may not be as good (see later); however you may not be able to escape the fact that
your borehole head data is insufficient for any finer detail of aquifer property

determination.

Returning to equation (3), then, we can rewrite it as follows:

m@)=h w(d)
where those parameters and inputs of the model which are assumed known are now
included in the revised model function, m, and p is of reduced dimension. In fact it must
be of smaller dimension than h because when we derive a set of simultaneous equations to

solve for the elements of p in the next section, there must be fewer unknowns than
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equations (the number elements of h} in order for the system of equations to be capable of

solution.

In the MODINYV algorithm, the elements of p can be the parameter values taken by
up to three different types of parameter within their respective constant-parameter
sub-areas. Parameter types can be anything that MODFLOW can read as a
two-dimensional array of real numbers, This includes transmissivity, storage capacity,
recharge for any (or up to five) stress periods, etc.; one “parameter type" cotresponds to
each such two-dimensional array. Though recharge is strictly a model input rather than a
parameter, and though quantities such as maximum EVT rate likewise govern another
model input, we will refer to anything that MODFLOW can accept as a two-dimensional
real array (with the exception of initial heads) as a "parameter type" in the discussion that
foliows. The values taken by any such "parameter type" within its (unique) zones of

piccewise-constancy are thus admissible elements of the vector p,

4.2.2 The Inverse Problem

m in equation (4) is a continuous function of p, mapping N-dimensional space into
M- dimensional space where N is the number of elements of p (equal to the number of
individual parameter values requiring estimation) and M is the number of elements of h
(equal to the number of observation times multiplied by the number of observation bores).
Let J be the Jacobian matrix of m. This is the matrix whose ith tow is the derivative of the
ith element of h with respect to each of the elements {in order) of p. Hence J has M rows
(same as h) and N columns (same as p). Let hy and po satisfy equation 4. If we now
change each of the elements of py by a smali amount to obtain the vector p, the resultant

change to the head vector can be approximately calculated as

Ah=h-hg~ J(p - po} = JAp -(3)
where the approximation improves as Ap, and hence Ah, are reduced. Let us assume that
we presently have an estimate for each of the values of each of our unknown parameter
types within their respective constant-value sub-areas; let this vector of estimates be Po-
Using our model (ie. MODFLOW), hy is readily calculated using equation 4. Let h in

equation 5 be the vector of heads observed from bores in the aquifer; of course the
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elements of h must pertain to the same bores at the same measurement times as do the
corresponding elements of hy. Then in equation 5, there is only one unknown, viz. p, the
vector the model is calibrated provided, of course, that the constant-parameter sub-area

boundaries are well chosen,

However, there is a problem. If M, the number of heads, is less than N, the number
of unknowns, there are less cquations than unknowns and we cannot solve for p. If M is
greater than N, then we could select a set of N of the M equations represented by (5) and
abtain a solution for p; however, selecting another set of N equation may give us a
different sotution and we are left with the question for which solution is best. If N and M
are equal we obtain a unique solution for p, but the lack of redundancy in our observations
gives us no protection against the effects of head measurement errors or of an
inappropriate parameter sub-area zonation scheme. Without such redundancy, parameter
vaiue estimates may be erroneous, and the calibrated model may thus provide a poor basis

for predicting future aquifer behaviour.

To solve the inverse problem, then, we must formulate it slightly differently.
Again, let us assume that we have a current set of parameter estimates, py, and hence a
corresponding set of model-generated heads, hy, calculated on the basis of py for a number
of bores at a number of times. Corresponding to the elements of h, we have a vector, hy,
of head measurements. We wish to improve our current estimate, p,, to a new parameter
vector p;, generating a head vector h, through equation {(4) that is "closer" te hy, than h, .
As it is foolish to expect that we can choose our parameters such that all the corresponding
elements of h; and hy, are exactly equal, and as we wish to make use of all the measured

heads in establishing p,, we choose as our criterion for determining p, that

,..
=

¢= {HI = iim

)
L
where the superscript "t" refers to the transpose of the vector. ¢ is often referred to as the
"objective function”. In this equation, W is a "weighting matrix" which, in MODINV, is

assumed to contain diagonal elements only. Hence equation (6a) can also be written as
M

$= 2 (i - hi)® Wi = minimum ...(6b)
i=1
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where w; is the i'th diagonal element of W. In other words, the weighted sum of the
squares of the differences between model and observed heads must be a minimum, The
use of weights allows us to give measured head values which we "trust” a greater say in
the determination of parameter values than those which we do not. Alternatively it
provides a means by which we can enforce a condition that heads calculated in a particular
model sub-area, or at a particular time, be better matched to reality than those elsewhere or
at other times, if they cannot all be simultaneously matched as well as we would like. The
diagonal elements of the matrix W, then, can also be considered as a weighting vector of
dimension M, each element of which determines the importance of the corresponding
element of hy, in governing the estimation process; it is good practice to select these
weights from the interval [0, 1]. If measurements are missing from some bores at certain
u can use "dummy" measurements for the corresponding elements of h,, , and set
the corresponding measurement weights to zero; in this way, such elements have no effect

on the estimation process.
Defining
Ah=hy-h, H AP =P1- Po -"(7)

where h;, Py and h, , p, jointly satisfy {4), then Ah and Ap approximately satisfy (5), with

the approximation improving with proximity of h, to h, and p, to p:, ie.

Ah=h; - h, = J(p1 - pu)} =JAp w(8)
Substituting (8) into {6)

(&h + h, - hy)' W(AD + hg - hy) = minimum
which is equivalent to:

AR'WAR + AW'W(h, - hyy) + (hg - hy) Wah + (b, - h)'W(h, - hy,) = minimum
ie.

Ah'WAh + 2A0'W(h, - hy) = minimum ()
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where constant terms have been ignored because they cannot be minimized and we have

made use of the fact that W is a symmetric matrix. Substituting {8) into (9):

(JAPYW(JAp) + 2(JApY W(h, - hy} = minimum

ic.

Ap'I'WI)Ap + 2Ap'T'W(k, - hy) = minimum «(10)
Now if both termis on the left of (10) are differentiated with respect to each element of p
and the right hand side is equated to zero in each case (hovsuse of the minimum), we

obtain

(J'WHAp = -I'W(h, - hy) ~(11)

J'WJ is a N x N matrix (often referred to as the "normal” matrix); hence equation (11)
represents N equations in N unknowns which can be solvud for the elements of Ap
provided J'WJ is not singular. A singular matrix implies thai, even though there may have
been more borehole head observations than there are unknown parameter values, there is
still insufficient information for unique parameter value determination. For example if, in
a steady-state model, you ask that both recharge and transmissivity be determined
everywhere in the model, you will obtain a singular normal matrix hecause the values
taken by one parameter type (eg. transmissivity) for a particular head distribution, depend
on the values taken by the other parameter type (recharge). However if vou assume that
recharge is known everywhere you can then estimate the iransmissivity distribution, and

vice versa.

Problems can also arise if the normal matrix is nearly singular; if this occurs

MODINV may have trouble minimizing ¢ of equation (6). Considering the steady-state

. TclaiTbar Aot

ansmissivity distribution

probiem again, this can occur if you atiempi io estimaie the
with too great a spatial precision in an area wherg there are too few borehole head
observations. If there are many model sub-areas in a zone of sparse measurement, it will
be possible to simultaneously vary the transmissivities of these zones in such a way as to
maintain the model heads in the observation bores relatively unchanged. This means that
the observed borehole heads do not have the power to tell you what the individual

transmissivities are; this is the phenomenon of high parameter value correlation again. The
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higher the degree of such correlation, the closer will the normal matrix approach to

singularity, and the greater will be the possibility of numerical instability.

From equation (1)

Ap = - (F'WJ) I'W(h, - hy) «12)
while from (7)
pL=4p+ pe w(13)

and an improved set of parameter values has been obtained. Because (8) is only
approximately correct (especially if py is a poor estimate of the aquifer parameters so that
Ap needs to be large), the process outlined above needs to be repeated to obtain another
estimate p;, then another, py etc. until further improvement is impossible, or until ¢) of
equation (6) is low enough to indicate an acceptably good fit between model and field
data.

MODINV does not use equation (12) for parameter improvement; rather, it uses a
slight modification of it. Defining (¢ as the value of the objective function {weighted sum
of squared head differences between model and observed heads) with model heads

calculated on the basis of the parameter set py, it can be shown that
Vi = 2J'W(h, - k) w(14)

where Vi is the gradient of ¢ with respect to the elements of po. Substituting (14) into
(12) and using (13) we obtain:
('WJ) Vo

p1=Po- --------------
2

Generalizing this to the i-+lth iteration:
(J'WI) Vo

Piet = By < e -(15)
2

The hardest part of using equation (15) to improve parameter value estimates is
calculating the Jacobian matrix, J. In MODINV, finite differences are used. For p;, the
parameter set at the beginning of the i+lth iteration, MODFLOW is run to obtain the

corresponding h; vector. Then a single element of p; is increased by a small amount and
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MODFLOW is run again to determine a new sct of heads, hi, where the superscript "j"
indicates that the jth parameter value, ie. the jth element of p;, was varied. The jth column
of the Jacobian is then calculated as the vector

h{ - b

6p7
where 8p{ is the change to the jth element of the parameter value vector pi. When
convergence has nearly been obtained, MODINV uses central differences for greater
accuracy in derivative calculations. In this case each p.-i is first increased, and then
decreased, by p; to obtain, respectively, the set of heads hiay and hiy. The jth column of
the Jacobian is then approximated as the vector

higy - hi(z)j

The gradient vector is calculated in similar fashion.

Calculation of head derivatives by finite differences is very time consuming. In
fact for most MODINV runs, this accounts for over 70% of the computing time. There are
more efficient methods of derivatives calculation that can be used under confined aquifer
conditions (ie. when equation (1) i¢ linear); there are also other optimization methods
available that do not require the calculation of explicit head derivatives with respect to
individual parameter values for their implementation. However the calculation of
derivatives of head with respect to parameter values by finite differences is perfectly
general, being useable for any distributed parameter type that MODFLOW can read, under

both confined and unconfined conditions. Also the Gauss-Marquardt method (see next

fewer steps by far than most other methods. Note that the reason why it does not
completely converge in a single step is that the relationship between Ah and Ap upon

which all of the above theuty is based (equation 8) is only approximately correct.

MODINV provides you with the choice of optimizing either parameter values
themselves or the logarithms or "logistic transformations” of parameter values, the last

being defined by the relationship
24



Py =log [p/(p-1)] -(16)

where p is the parameter value and p, is its logistic transformation. In the latter two caszs,

everything said so far about parameter estimation and derivatives calculation applies just

as well, provided the transformed parameter value, rather than the parameter value itself,

is considered as the parameter value to be estimated. There are two advantages that

accompany log or logistic parameter value transformation-in certain cases:
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There is strong evidence that the probability distribution satisfied by some aquifer
parameters (transmissivity, hydraulic conductivity) is log-normal, rather than
directly normal. For estimating such parameter types it is befter to optimist the
logarithms of the parameter values than the parameter values themselves because
parameter stochastic property inferences dra\'vn from a least squares inversion

(discussed later), assume that parameter values possess a multidimensional normal

probability distribution. Also, in such cases, optimization convergence appears to

be faster and more stable.

Some parameters must take values within a certain range for them to have any
meaning. For example, transmissivity must never be negative and storage capacity
must be between 0 and 1. If a parameter is left at the mercy of an iterative
adjustment procedure that pays no attention to whether it is given sensible values
or not, errors could result. By optimizing the log of the parameter, the parameter
itself can never become negative. Similarly, no matter what value is given to the
logistic transformation of a parameter, the parameter itself will never be outside the
interval (0,1).

The Gauss-Marquardt-l.evenberg Method

Equation 15 describes the Gauss method of solution of the inverse problem.

Defining

N=JWJ (17

fi=Vd /2 (18}
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(15) can be rewritten:

Ap=N'1f, w(19)

While the method often converges rapidly (the more rapidly it converges, the fewer
optimization iterations are required), its performance is not perfect, especialiy in cases
where parameter correlations are high. To make the method more robust and reliable, it is

usually modified in a manner similar to that originally outlined by Levenberg in 1944 and

then by Marquardt in 1963, though the method is normally named after the latter author.

To implement the method, N. the normal matrix, is modified by increasing all of its
diagonal elements. In the MODINV algorithm N is modified to N by adding a fixed

amount, , to all diagonal elements, ie.
Nn=(N+2AlD) «(20)

where A is a positive constant and I is the N x N identity matrix. If N,, now replaces N in
(19} a Ap is obtained which has been found to be more reliable in many cases than that
obtained solely using the Gauss method (ie. a A of zero), (It should be noted that when A is
high, the resulting Ap is the same as that obtained using the so-calted "gradient” method of
parameter value adjustment.) However we are still left with two problems when using the

Marquardt enhancement of the Gauss method. These are

(6] how should k be determined at each optimization iteration, and

(i)  once a Ap is obtained using Ny, in place of N in (I9), what fraction of this Ap
should actually be added to p; to determine the pi, which yields the minimum

weighted sum of squared differences between model and observed heads.

The first problem, the value of A, is not formally solved; instead, experience
dictates the best choice. In the initial stages of an estimation process A should riormally be
high (otherwise the solution may not converge), especially if the initial parameter value
estimates (ie. the elements of pg) are poor. As the process progresses and the upgraded
estimates become better and better, A is normally reduced because the Gauss method has a
superior performance over the gradient method for parameter values which are close to
optimum.
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PREINV, the MODINV preprocessor, asks you for an initial A. This is the X value
used in the very first attempt at reduction of ¢, the objective function, of equation (6). For
each MODINV optimization iteration, one or a number of M's are tried. For the first
optimization iteration the initial & is used first; for later optimization iterations a A is first
tried which is reduced by a certain factor (supplied by you to PREINV) below that which
worked best for the previous iteration. Unless the objective function is drastically reduced
with this first A, a second A, reduced from the first by this same factor, is tested. If the use
of the second A achieves a p vector that lowers ¢ by a significantly greater amount than
that achieved through the use of the first one, then A is lowered again and the process is
repeated. When it is judged that ¢ cannot be further significantly reduced by lowering A, or

Wimn ,..f ﬁ!vn e 1-

a maximum of five it's have been

have heen tested, the best p is aceep

Le 4 =

ted as the updated parameter
set. Sometimes, however, A must be increased to obtain an improved parameter set. While
experimenting with different values of A in this fashion is a little cumbersome, and
certainly consumes computer processing time, it is worth the effort because it is important,
for each optimization iteration, to achieve a good parameter improvement. With each new
optimization iteration the Jacobian matrix must be recalculated, and this is the most time-
consumptive part of the whole inversion exercisc; ‘hence the best or nearly the best,
parameter improvement possible must be achieved for each optimization iteration in order
that fewer overall iterations are required in the whole inversion process. If a few values of
2 must be tested to maximize the improvementlrealised for each iteration, then it is worth
the effort. Fortunately it has been found that, if the initial A and its adjustment factor are
well chosen, most iterations require the use of only one or two A's so that little time needs

to be spent in this kind of experimentation.

The second problem, that of the step size, is solved in the following manner. Once
a A has been chosen and an Ny, calculated and substituted into (19), the latter equation is
solved for Ap. However because we have used Ny, rather than N. Ap now indicates only
the direction of parameter change, the actual size of the change being BAp, where P is a
factor which must be calculated such that BAp provides the maximum possible reduction
in 0 of any parameter changes that take place in the direction of Ap. It has been shown by

Carrerra and Neusnan (1986b) that b can be calculated as
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. ~21)

for the 1+1th iteration, where

1= Ohi /3By ~(22)

In MODINV, the y vector is calculated using finite (forward or central, as

appropriate) differences.
4.2.4 Measured Head Standard Deviations and the Reference Variance

In the above discussion, no assumptions were made concerning the probability
distributions of head observations or (transformed) parameter values for model sub-areas.
Our sole criterion for deciding on a set of model parameter values was that the sum of the
weighted squared differences between model and measured heads be minimized using this
set. Hence we arrived at a set of parameter values for which the fit between model and

observed heads is optimum in the weighted least squares sense.

If we make the assumption that both the head measurements and the individual
parameter values (those values taken by parameter types within their constant-parameter
zones) are normally distributed, then we can say something quantitative about the level of
uncertainty pertaining to these estimated parameters values. It is to this topic that we now
tum. Note that, in the discussion that follows, if a parameter value has been
mathematically transformed so that its log or logistic transformation is estimated, then the
following discussion is applicable to the transformed parameter value rather than the
parameter itself, in what follows, "parameter value" will refer to whichever of these is

being estimated.

At first it may seem that the idea of observed heads being subject to a probability
distribution is fallacious because they can normally be determined to the nearest
centimetre at least. This is certainly correct, but when you come to calibrate your model it
is likely that you will have to accept discrepancies between model and observed heads that
are much greater than this. These discrepandies are attributable to the fact that head levels,

as actually measured, are subject to small-scale random spatial variations superimposed on
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regional head variations because of the presence of aquifer spatial inhomogeneity. The
actual aquifer recharge, transmissivity ete. distribution is far more complex than our model
has the power to replicate, and probably far more complex than we have the ability, or -
inclination, to measure. Our model seeks to rteproduce the first-order or major
determinators of groundwater flow as they are expressed in the definition of constant
parameter value sub-areas within the model. Second-order earth physical property
varijations which are superimposed on these major carth property subdivisions are not
modelled; rather we are content to acknowledge their existence by noting that every head
measurement is subject to both a deterministic effect (which we attempt to predict using
the model), and a random effect (attributable to the fact that the model is a simplification
of reality). of course if it becomes apparent, through running MODINV with a given
aquifer physical property zonation scheme, that the random head variations are
excessively large, we may be inclined to add additional sub-areas to our model, thus
needing to estimate a greater number of parameter values. Or we may adjust sub-area
boundaries. But we acknowledge that we will never remove these random head variations

entirely, because we will never have a perfect fit between model and reality.

Because il is thus a stochastic variable, a complete representation of each head
measurement must include both the measured value itéelf, and a quantitative description of
the probability function from which this measurement was taken. This description is
simplified if we assume a normal probability distribution for the heads. In this case, our
vector of observed head values, hy, can be considered as a collection of sample values of
random variables whose mean is estimated at cach sample point and observation time as
the best-fit-model head at that point and time. The weight matrix is proportional to the
inverse of the measured heads covariance matrix, ie.

2. -1

W=V w{23)
o h

where Vy, is the measured head covariance matrix and Gl is a proportionality constant,
referred to as the reference variance. When head measurements are made in the field the
latter's vatue is unknown. However it is determined as part of the least squares estimation

process; see below.
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Because W is a diagonal matrix, so too is Vy,. This means that we assume that the
head measurements are uncorrelated both in space and time, ie. head measurement
uncertainties at any one bore at any one time have nothing to do with those at another bore
at another time. This assumption is not as obviously true as it first sounds, given the origin
of measured head random variations as discussed above, If an unaccounted-for
transmissivity inhomogeneity, for example, places a lower limit on the squared model
minus measured head sum, then its effects may be apparent on any bores that are in, or
close to, the heterogeneity; head "errors" are thus correlated for all bores affected by the
some inhomogeneity. Also, if we are carrying out a parameter estimation procedure using
head measurements taken at a number of times, then it is likely that heads at a particular
bore will be over- or under-estimated by the model not in a completely random fashion,
but for a number of sampling times in a row (see Carrerra and } ¥euman, 1986a). However
the MODINYV algorithm does not try to incorporate such spatial or temporal measured
head correlation into the inversion process, both for reasons of simplicity and because the
degree of spatial and temporal correlation is difficult to estimate and depends on the final
model, which it is the estimation algorithm's purpose to determine. The weight matrix,
then, being proportional to the inverse of the measured head covariance matrix for a set of
uncorrelated heads, is a diagonal matrix, A diagonal element is large if the uncertainty
level pertaining to the corresponding head measurement is considered to be small and vice
versa. If, for an evenly distributed set of measurement bores, You assign smaller weights to
head measurements in certain parts of your model, you are asking MODINV to give
greater importance to the matching of model and observed heads over other parts of the
model, presumably because the heads in the area with low weights are subject to greater
uncertainty, probably because of greater aquifer heterogeneity there,

Any diagonal term of a covariance matrix expresses the variance of the pertinent
parameter value; the variance is the square of the standard deviation. By allocating relative
weights to your measured heads, you are, in reality, allocating relative variances and hence
relative standard deviations. The absolute variances for these heads depends on how good
a fit you end up achieving between mode] and measured heads, On the assumption that
your model (including its constant-parameter sub-areas as defined by you) is correct (an

assumption which you should always treat with suspicion), a good overall fit between
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modelled and measured heads indicates that the head measurement standard derivations
must be small. It can be shown (eg. Mikhail (1976, p288) that an unbiased estimate for 2

is given by
o’ = [(k - k) Wik - bp)] /r=/r - (24)

where h is the vector of optimized mode! heads, hy, is the vector of measured heads and r
is the redundancy. The latter is defined as the number of observations minus the number of

parameter values for which estimates are required, ie.
r=M-N «.{25)
with M and N defined earlier in Section 3.2.1.

Once parameter values have been optimized, given your set of parameter zonation
sub-area boundaries, ¢, can be calculated from (24); 'you can then catculate the standard
deviation of individual head measurements by multiplying the inverse of each head
measurenrent weight by the newly-determined reference variance {equation 23) and taking
the square root. If you amrive at a figure that you consider too high, you can change the
model by, for example, maintaining the same number of parameters and shifting 9
parameter zonation boundaries, or by adding some extra parameter constant-value zones
(so that "random" variations responsible for the unsatisfactorily high head measurement
variances now become incorporated into the model). However you should beware of
trying to use a model with too many parameters as computing times for MODINV rise
linearly with the number of parameter values for which an estimate is required. Also, the
more parameter values there are, the more likely are'some combinations of values to be
highly correlated. This means that you may not end up with a model that is any better (in
terms of its ability to predict water levels over the model area) than one parameterized
with fewer variables because this high degree of parameter value correlation will be
reflected in high parameter value variances (see next section}. Also, convergence problems
and numerical instability may raise their ugly heads. Carrerra and Neuman (1986¢)
provide a good discussion on complexity in aquifer parameterization, to which you are

referred for more details; in general, simpler is better.

31



In the MODINV algorithm, the reference variance is calculated after each
parameter upgrade. In PREINV you are asked to provide a reference variance which, if
achieved, will cause optimization to be terminated. If you indicate, using this reference
variance, an overall measured minus model head discrepancy that you can tolerate, further

optimization can be forestalled once (and if) this tolerable discrepancy has been achieved.

4.2.5 The Parameter Value Covariance Matrix

It can be shown that the parameter value covariance matrix can be estimated by
V, =0, 'WJ)" .(26)

The diagonal elements of this matrix are the variances (id the squared standard
deviations) of the individual parameter values while the off-diagonals elements are the
covariances between respective parameter value pairs; these latter are indicative of how
highly corrglated two different parameter values are, It is important to note that the
derivation of (26) relies on two assumptions, neither of which are strictly correct in the

groundwater modelling context.

The first assumption is that heads and parameter values are normally distributed.
While this assumption may be more closely adhered to if parameters are transformed, it
will never be completely correct. As with measured heads, the concept of parameter values
as random variables relates to the effects of aquifer inhomogeneities superimposed on the

simplifications inherent in the process of model construction.

The second assumption is that model head and parameter value variations are
linearly related in the manner described by equation (8). As previously discussed, this
linear relationship is only approximately correct, with the approximation worsening for
larger parameter and head variations about specific head and parameter values, the laiter
being related to each other through the nonlinear relationship of equation (4). Hence if the
covariance matrix indicates that a parameter standard deviation is large, which is the same
as saying that the parameter value could vary widely and still be used in the calibrated
model, then the exact value of that standard deviation, as provided by the covariance
matrix, cannot be correct because such a wide parameter variation will put it outside the

range of the linearity assumption.
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Nevertheless, the parameter covariance matrix is one of the most useful pieces of
information to come out of the inversion process. its principle role is that of an indicator of
how well your borehole head measurements are able to define aquifer properties
(including recharge or EVT if you are estimating either). For while your model heads may
be well matched to the measured heads, (the reference variance may be satisfactory), some
parameter value standard deviations may still be large. This indicates that, as mentioned
above, these parameter values can be made to vary by large amounts with little effect on
the model heads at the boresites. If this applies to a single parameter value, it will have a
high variance and will be uncorrelated with other parameter values. If, however, two or
more parameter values can be simultaneously varied in a certain relationship to each other
while causing minimal change to the model heads at the observation bores over time, then
these parameter values will each have a high standard deviation and the covariance
between pairs of such parameters, as indicated by the pertinent off-diagonal elements of
the covariance matrix, will also be large. This indicates high parameter value correlation
or, to put it another way, a high degree of stochastic dependence between the pertinent
parameter values. If you were to run MODINV again while holding one (or more) of a set
of highly- correlated parameter values fixed, the standard deviations of the other members
of the set may then be small because the definition of the model now includes the first
member(s) of the set as fixed. As the first parameter now has no opportunity to vary in
harmony with the others, for minimal resultant head variation at the observation boresites,

the standard deviations of the others cannot be as large.

Thus the parameter covariance matrix tells you something about your medel that
the goodness of fit between model and observed heads cannot tell you. For example, if the
density of observation bores is low or zero over a certain part of the aquifer, parameter
values estimated in that area may not be well defined, and this will be indicated in the
covariance matrix. While your model may appear to be well calibrated because the model
replicates observed heads at the existing observation bores with a good degree of
accuracy, its capacity to predict water levels over other parts of the aquifer may be highly
suspect if the calculation of these latter heads relies on parameter values which are,
locally, ill defined. By varying highly correlated parameters in directions defined by the

parameter covariance matrix eigen vectors, you can test the effect of simultancous
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parameter variation on modelled heads at both observation bores and elsewhere. If the
head change at the observation bores is small. but is great at other places that may be of
interest to you, then you may not have enough information to paramelerize your aquifer if

one of the model's tasks is to predict water levels in this other area with any accuracy.

Correlation between pairs of parameters can be displayed as a correlation
coefficient matrix. If ;; is an element of the parameter value covariance matrix, then the

corresponding element of the correlation coefficient matrix is given by
py=oy/ [oi’ o1 ' «(27)

where o and o are the ith and jth diagonal elements of the covariance matrix;
obviously the correlation coefficient matrix has diagonal elements of unity. The
correlation beiween different pairs of parameter values is then readily apparent from the
pertineﬁt off-diagonal elements, a high degree of correlation between parameter value
pairs being indicated by a correlation coefficient close to 1 or -1 (a correlation coefficient

cannot be higher than 1 or less than -1),

Another method of displaying the wealth of information that is available in the
parameter value covariance matrix, is to display its eigenvalues and eigenvectors. The
latter define the directions of the axes of the parameter confidence "ellipse” (actually, it is
only an ellipse in two dimensions, ie. if only two parameter values are estimated), whereas
the square roots of the eigenvalues are the magnitudes of the semiaxes of the parameter
confidence cllipse. If all eigenvectors have only one component, then the axes of the
confidence ellipse will lie along the parameter value axes, and parameter values are thus
all uncorrelated. In the more usual case, the degree of comelation between different
parameter value estimates can be obtained by examining the components of the
eigenvectors. If, for example, the i'th, j'th and k'th components of a particular normalized
eigenvector are much larger than the other components of that vector, and the eigenvalue
corresponding to that cigenvector is larger than most of the eigenvalues corresponding to
the other covariance matrix eigenvectors, then this indicates that the linear combination of
the i'th, j'th and k'th parameter values is better determined than are the individual values;
the coefficients of this linear combination correspond to the respective eigenvector
elements. See Carrerra and Neuman (1986¢) for a further discussion of how the covariance
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matrix eigenvectors and eigenvalues can be used to understand the power and limitations

that your measurement set possesses in parameterizing your model,

4.2.6 Final Points

As described above, MODINV employs the Gauss-Marquardt method to minimize
the sum of the weighted squared head differences between measured and model heads,
This "objective function” is the same function that is minimized in the Maximum
Likelihood method of parameter estimation. In fact, in the present case, the only difference
between the two methods is in the estimated value of the reference variance; in the
Maximum Likelithood method, the denominator in eguation (24) is M, the number of
observations, rather than M-N, the redundancy. When M is much higher than N the two
estimates are close; however 6,2 as provided by (24) has the advantage that it is an

unbiased estimate.

Some worrying questions are (i} whether ¢, as defined by (6} has a single
minimum, and (ii) if so, whether MODINV will always find it. Unfortunately there is no
single answer to both these questions that applies to all modelling situations and all
parameter types and combinations of parameter types for which estimated values are being
sought. Experience in using MODINV has demonstrated that ¢ can converge to a local
minimum in some cases, for which parameter values are far from optimurm. In other cases
it will not converge at all. However both of these phenomena are more likely to occur
when many parameter values of different types are being simultaneously estimated; in
such cases you can often dramatically improve MODINV's performance simply by
holding a few key parameter values fixed, or by using fewer parameter values in a less
complex areal distribution. Failure to converge fo a global minimum is often a signal that
parameter value correlations are high and that you are consequently asking too much of
your data in trying to resolve individual values. Hence, not only will a simpler model
improve MODINV's performance, but it may be a more realistic representation of the true
information content of your measurements. As such, predictions made with the calibrated
model will tend to be "conservative” in that the possibility of predicting spurious local
head variations, resulting from the presence of local, poorly defined parameter values, will

be reduced.
35



4.3 MODINV Processing Steps

Fig.4.1 shows a simplified flow chart of the MODINV algorithm; see Table 4.2 for
a list of symbols used in Fig.4.1. You can tell what part of its algorithm MODINV is
executing at any time by inspecting its continually-uphated run record which is written to
file MODINV.PRN. If you are running MODINV from the terminal and have requested a
screen display of computation progress, then additions to file MOD¥NV.PRN are also sent
to the screen, allowing you to monitor the progress of the optimization process. If you are
running MODINV as a batch job, screen display is not available. However some systems
will allow you to read MODINV.PRN, even though it is concurrently held open by
MODINV; other systems allow you to read a batch job log file (while the batch job is
executing) containing information that would have been sent to the screen if the job were
run from the terminal. In either case, periodic inspection of the MODINV output allows

you to monitor MODINV run progress.

Table 4.2 : Symbols Used in Fig.4.1

Symbols Description

¢ Objective function

Vo Gradient of the objective function

i Tacobian matrix

N Normal matrix

1 Tdentity matrix

z Covariance matrix

A Marquardt lambda

i Parameter value estimates for I'th iteration

Api Parameter optimization direction vector for I'th iteration
p Fraction of Ap by which to obtain pis1 D

¥ Derivative vector of model heads wr.t. B

m Number of parameter values requiring optimization
1 Optimization iteration number
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5.0 MODEL FORMULATION

5.1 Site Conceptualisation

Based upon the available information, a concebtual model is postulated to provide
a framework that describes flow system geometry and the physical processes 1o be
simulated by the numerical model. The study area ir: Central Godavari Delta measures to
about 825 sq.km bounded by rivers Gowthami Go. avari in the east, Vasistha Godavari
and its branch Vainataya in the west, and Bay of Bengal in the south. The geology of the
area is interpreted from the exploration borehole information at Mandapeta. The study area

and its cnvirons is underlaid by coastal alluvium. The ailuvial deposits of the area are

essentially contributed by Godavari river. The subsurface geology existing at Mandapeta
and approximate depth of units are given in Table 5.1.
Table 5.1 : Lithology at Mandapeta
Depth range {m) Deescription
From To
0.0 1.5 Top Soil
1.5 18.0 Sand, fine to medium
18.0 19.5 Sand, Coarse to very coarse
195 31.0 Clay
310 3%0 Sand, medium to very coarse
39.0 49.5 Sand, medium to coarse
49.5 55.5 Sand, fine to medium
55.5 61.5 Sand, fine
61.5 67.5 Sand, fine to medium
67.5 735 Sand, medium
Below 735 Sand, coarse to very coarse
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The thickness and lateral continuity of individual layer as given in Table 5.1 does
not vary much throughout the flow domain in the study area. The study area consists of
mainly two aquifers for groundwater development — the unconfined or phreatic aquifer
and the confined aquifer. Hydrogeological investigations carried out in the study area
reveal that a large number of shaliow tubewells and filter points, mainly used for irrigation
purpose, have been sunk into the phreatic aquifer.- This aquifer is recharged mainly
through the direct infiltration of rain water, besides some recharge taking place due to
irrigation return flow. Therefore instead of incorporating two aquifers, only one aquifer
system of unconfined aquifer is conceptualised in the present model. The clay bed below

this aquifer would act as the bottom boundary for the conceptual model.

The study area has a gentle land slope from the upper reaches towards the sea and
so follows the ground water flow direciion. The average depth of water table below
ground level during pre-monsoon period varies from about 7 m in the upper reach to about
1.75 m near the coast. The average seasonal water table fluctuation (i.e. pre to post-

monsoony) in these reaches is observed to vary from about 4 m to about 1 m respectively.

5.2 Spatial Domain

The spatial domain is descretized into 75x85 grids, each grid having a dimension
of 1 km x 1 km. The aquifer is represented by a single model layer having a uniform
thickness of 18 m. Spatial extent of rivers, canals and coastal line would be accomodated
through river package and Head boundary package as available in MODFLOW/MODINYV.

The active cells over the spatial domain are shown in Fig.5.1.

5.3 Boundary Conditions

As stated earlier, the study delta is hydrologicglly bounded by rivers on two sides
and Bay of Bengal on the third side. The rivers which are the distributaries of river
Godavari are very deep to act as the hydrological barriers. So, in the conceptual model
these two rivers are bounded by inactive cells to indicate the basin boundaries showing no
sub-surface inflow or outflow from this basin to other adjacent basins or sub-basins. The
Bay of Bengal is considered by the constant head boundary with the constant head taken
as 0 m.
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5.4 Temporal Consideration

The model is proposed to be calibrated for transient conditions for the monthly
water table levels of non-monsoon period of 1985. The calibrated model would be used to
provide the estimates of monthly recharge values corresponding to the monthly water table
levels during monsoon period of 1985, The number of stress periods for the above cases
would be taken as 4 and 5 (5 being the maximum limit of MODINV) respectively, each
representing 30 days.

5.5 River and Canal Network

The two natural rivers namely, Gowthami and Vasistha are running on either side
of the study delta, Besides, the followings are also present in the study area.
(1) Gannavaram canal, (2) Amlapuram canal, (3) Benda canal, (4) Bank canal

These rivers and canals are expected to interact with the aquifer system depending
upon their stages and the water table levels in the aquifer. Therefore, these natural rivers
and canals would be represented in the model through the river package, as provided in the
numerical model. The rivers and canals would be divided into a number of reaches
depending upon the variation in their geometry. Physical and hydrologic characteristics of
these reaches would be transferred to the model by three parameters i.e., river bottom
clevation, conductance and the stage. The conductance values for each reach is estimated
by the actual stream width, length of cell, hydraulic conductivity of the bed material and
thickness of the transmitting layer.

5.6 Discharge Wells

As per the information coliected from ihe Chief Planning G Office, E.G. Dist,, nearly
3950 shallow tubewells and filter points existed in the study area. These structures are well
spread over the basin and their yicld varies between 8500 to 1200 gph. These discharge
wells are incorporated in the model through well package. Depending upon the actual area
irrigated by these wells in kkarif and rabi seasons, the monthly draft through these wells is
worked out. This draft is uniformly distributed over the study basin through 396 numbers

of pumping wells in the model (the limit on maximum no. of wells in MODINV is 400).
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5.7 Evapotranspiration

The EVT package in the model accomodates the evapotranspiration process. The
EVT surface elevation, maximum EVT rate and EVT extinction depth would be defined
for each stress period of simulation. The EVT surface elevation is taken as the elevation of
the land surface. Since the study area has a large number of coconut trees which are
expected to draw water directly from the ground water, reservoir, the EVT extinction depth
is taken as 3 m. The maximum EVT rates for different stress periods as applicable to the

area would be provided to the model.
5.8 Recharge Rate

Recharge refers to the infiltrated water that crosses the water table and becomes
part of the ground water flow system. The rainfall and the irrigation return flow are the
two major sources of recharge in the study area and are considered in the conceptual
model. As the recharge rates generally vary in space, recent modelling studies incorporate
spatial variation in recharge by defining recharge zones. Typically, there is little
hydrogeologic information to use in defining recharge zones and in assigning recharge
rates to each zone. Instead, recharge zonation is usually justified on the basis of a
successful calibration. In the present case too, the spatial variability in recharge rates
would be put into the conceptual model through recharge zones considering the factors
such as rainfall, unsaturated thickness and location of rivers and canals. The further

discussion on estimation of recharge rates would be presented in the forthcoming chapters.
59 Hydraulic Conductivity and Storage Property

In the study area, the soils in the zone of water table fluctuation are assumed to be
homogeneous and isotropic. As seen from the well log data, mainly fine to medium sand is
encountered in this zone. The hydraulic conductivi'ty and specific yield for this soil
medium generally vary from 6 to 15 m/day, and 9 to 18% respectively. The representative

value of these parameters would be decided during calibration process.
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6.0 MODEL CALIBRATION AND SENSITIVITY ANALYSIS

6.1 Model Calibration

Parameter estimation of a groundwater model is essentially synonymous with
model calibration, which is synonymous with solving the inverse problem. Calibration of a
flow model refers to a demonstration that the model is capable of producing field
measured heads and flows which are the calibration targets (or the calibraticn values).
This is accomnplished by finding a set of parameters, boundary conditions, and stresses that

produce simulated heads and fluxes that match field measured values within a pre-

error method or by automated technique. The MODINV as used in the present study
employs the automated calibration technique to optimize the parameter values by

comparing the simulated heads with the observed ones for each iteration,

After formulation of the conceptual model, the input data and the initial estimates
of parameter values are transferred to the model through PREMOD and PREINV, which
are the preprocessors for MODFLOW and MODINYV respectively. To input the initial
head conditions, the heads at the nodes of each finite difference grid are interpolated from
the set of randomly observed water table levels using Kriging technique. The node values
are then transferred to the cell centres through a programme specially written for this
purpose. A total of 8 recharge zones are defined in the model to take care of the spatial
variation in the recharge rates. The model is calibrated for transient conditions of the
monthly water levels of non-monsoon period of 1985 by taking 4 stress periods (Feb. to
May 1985), cach representing 30 days, with initial conditions taken as of January. The
reason behind the selection of non-monsoon period for calibration purpose is that the
recharge during this period takes place mainly frem irrigation return flow (which can be

estimated from irrigation water quantities), and little or no recharge from rainfall,

The mean areal rainfall over the study area from Feb. to May 85 is computed as
little as 15 mm and is therefore neglected for recharge purpose. Based on the
G. W .Estimation Committee norms, the recharge volume due to return flow, derived both
from canal and well irrigation, over the calibration period of Feb. to May 85 is estimated
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as 107 MCM (NIH Report No.CS-117). Though, it is a lumped estimate of recharge over

the study area it would set the target for recharge stress over the calibration period.

A uniform rate of recharge which is computed from the lumped recharge estimate
is assigned to each of the recharge zones as an initial estimate. These recharge rates,
however, have been defined in the model as parameters for estimation. This would allow
the recharge rates to be optimized for each stress period and for each zone depending upon
the flow conditions in the respective zones. The model is initially calibrated for the steady
state conditions taken as the average of 10 years January water levels. This is. foliowed by

the second calibration for the transient cenditions by observing the following steps :

1. Run MODINV with steady state calibrated values of the physical flow system
parameters and optimize the recharge rates. MODINV will perform optimization of
the recharge rates to have a best possible match between the simulated and

ohserved heads under the given conditions.

2. Run MODFLOW with the optimized recharge rates and the corresponding
parameter set. Qutput the flow budget.

3 Compare the sum total of recharge quantities of all the stress periods (as obtained
from the flow budget) with the lumped estimate of the retum flow recharge (as

computed earlier).

4. If the quantities in the step 3 are not comparable, repeat the steps ! to 3 by
systematically varying, in successive runs, the hydraulic conductivity, specific

yield, recharge zone boundaries and the boundaries conditions.

5. The calibration is treated as complete when a parameter set and the physical flow
system boundaries are achieved which are capable of reproducing the target values

of the recharge stress and the heads.

Numerous model runs were carried out using the above procedure and the
calibration was achieved. The objective function, which is the sum of the weighted
squared head difference between observed and model heads, was obtained as low as 0.233,

The calibrated values of hydraulic conductivity and specific yield are obtained as 10.3
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miday and 10% respectively. The observed and simulated heads are given in Table 6.1.
While the final recharge zones are shown in Fig. 6.1, the optimized rates of recharge for
each of these zones and the total simulated recharge volumes during each stress petiod are

presented in Table 6.2.

Table 6.1 : Observed and Simulated Heads (m) for Calibration Period

Stress Period Well Nos.
(month) 1 2 3 4 5 6 7 8 g
1 Obs. | 0.31 | 2.67 | 1.52 [ 2.63 | 3.46 | 2.00 | 2.02 | 2.81 | 3.42
(Feb.,85) | Sim. | 031 | 273 | 1.52 [ 2.63 | 3.41 [ 2.00 | 2.01 | 281 | 3.41
2 Obs. | 0.31 | 2.33 | 1.44 | 2.58 | 3.36 | 167 | 1.70 | 258 | 3.03
(Mar.,85) | Sim. { 0.31 [ 250 | 1.44 [ 258 [ 320 [ 1.67 | 1.70 | 2.58 | 3.03
3 Obs. | 014 | 200 | 124 | 2.11 | 298 | 1.42 | 1.46 | 2.30 | 2.64
(Apr.85) | Sim. | 0.14 [ 2.3 | 1.24 | 2.11 [ 285 | 1.42 | 1.46 | 2.30 | 2.64
4 Obs. | 039 | 1.68 | 1.06 | 1.63 | 279 [ 124 | 1.29 | 2.11 | 232
(May,85) [ Sim. | -039 | 1.88° [ 1.06 [ 1.63 | 2.60 | 1.24 - 129 | 211 | 232

The observed and simulated heads as presented in Table 6.1 are found to be
matching very well. The scatter plots of observed and simulated heads for all 4 stress
periods are given in Fig.6.2 (a to d). The points in all the plots are observed to fall almost
along a straight line. The correlation coefficients between observed and simulated heads
are found as high as 0.999, 0.992, 0.994, and 0.989 for stress periods 1 to 4 respectively.

From Table 6.2, the recharge rates for stress period 4 are observed to be very low
and the simulated recharge volume is also found to be 9.59 MCM. This is due to the
reason that the canals were closed from 15" of April and whatever simulated recharge is
obtained in this period might be probably due to the time lag between the infiltration and
the water actually joining the water table. Also, some recharge might be caused due to
well irrigation return flow. The total simulated recharge and the lumped estimates of

recharge are found to be very close showing a difference of about 2.8 MCM only. In view
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of the large study area, the discrepancy of 2.8 MCM can be considered to be very
reasonable and within acceptable limits.

With the above performance, it was felt that calibration was in an acceptable stage

and the calibrated model could be used for estimation of recharge in monsoon season,

6.2  Sensitivity analysis

The sensitivity analysis is performed for specific yield and hydraulic conductivity
by changing one parameter value at a time. The calibrated value of each parameter was
systematically changed within the previously established plausible range. The resulting
change in average water level from the calibrated solution with respect to specific yield

)

and hydraulic conductivity for stress period 4 are plotted in Fig. 6.3 and 6.4 respectively
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Table 6.2 : Optimised Rates of Recharge and ihe Simulated Recharge volumes for

Calibration Period.

Stress period Recharge zones | Recharge rates | Total simulated.

{m) Recharge vol. in

() the stress period
(MCM)

Remarks

0.00943
0.04168
0.00245
0.00116
0.11455
0.08678
0.04888
0.06265 33.77176

(Feb.,85)

Canals running

0.01286
0.01925
0.00180
0.00056
0.08871
0.09552
0.07666
0.08516 35.27406

2
{March, 85)

Canals running

0.60130
0.00054
0.00183
0.00086
0.07055
0.03404
0.06430
0.06927 27.16137

3
(April, 85)

Canals closed
from
15™ April

0.00025
0.00087
0.00048
0.00044
0.06134
0.00279
0.05209
0.00522 9.59281

4
{May, 85)

G0 S OV b W B 00 S O W B 08 O L b L |08 O b e

Canals closed

(1)  Total simulated recharge volume in af! the stress periods

2) Lumped estimate of recharge from return flow .
(canals + wells)

(3)  Difference
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7.0 RESULTS AND DISCUSSIONS

7.1 Estimation of Recharge

Recharge to the aquifer is estimated during monsoon season since the major
pertion of annual recharge takes place during this period, The calibrated MODINV was
run under transient conditions with 5 stress periods i.e. July to Nov.85, to optimize the
recharge rates for the corresponding observed heads. Only river stages and
evapotranspiration values were modified in the input data and all other parameters were
kept as per the calibrated model. The objective function for optimization process during
this period is obtained as 0.1715. The observed heads and the corresponding simulated
heads are presenied in Table 7.1. The conionr maps of observed and simuiated heads for
all 5 stress periods are given in Figs. 7.1 to 7.5. Ii can be observed that the simulated and
observed heads are very much comparable and hence acceptable. The optimized recharge
rates for each of the recharge zones and the total simulated recharge volume during each

stress period are given in Table 7.2.

Table 7.1 : Observed and Simulated Heads {m) for Monsoon Period

Stress Period Well Nos.
{month) 1 2 3 4 5 6 7 8 9
1 Obs. |-0.40) 230|090} 278 [ 311 {147 | 1.8% | 206 | 2.00

(July,85) | Sim. |-0.40 [ 2.32] 0.8% | 2.76 | 3.15 | 1.51 | 1.50 | 2.07 | 2.07
2 Obs, |-0.07 | 269 | 136 | 348 [ 3.72 | 233 | 2.54 | 3.16 | 6.09
(Aug.85) [ Sim. [-0.06]2.80 | 1.35 [3.51 | 3.61 | 2.33 { 255 | 3.15 | 6.13

3 Obs. | 046 | 264 | 1.52 [ 288 | 356 | 253 } 2.50 | 3.11 | 5.53
(Sep..85) | Sim. | 048 1274 | 1.52[ 296 | 3.53 | 255 | 252 | 3.13 | 5.57

4 Obs. | 062 | 3.03 [ 251 [ 3.08[ 409 [ 274 | 3.06 | 3.73 | 649
(Oct.85) | Sim. | 0.64 | 3.21 | 2.52 | 3.14 398 4276 | 3.07 376 | 6.54

5 Obs. | 046 | 243 [ 2.1 | 268|354 311278 34t | 644
(Nov.,85)

Sim. | 045 [ 2.58 | 205 [ 269 [ 335312278 | 340 | 6.50
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Table 7.2 : Optimized Rates of Recharge and the Simulated Recharge Volumes for Monsoon Season.

Stress periods Recharge zones | Recharpe rates ()} | Total sim. Recharge Remarks
(Months) volurne it the stress
period (MCM)

0.04478
0.05883
0.05818
0.11166 Canals ninning
0.13331
0.20990
0,03543
0.04191 53.71920

1
(Tuly, 85)

0.30875
0,15068
0.10820
0.08574 Canals running
0.09470
0.12780
0.07765
0.06060 113.17762

2
{Aug..85)

0.00382
0.03983
0.07007
0.04043 Canals running
0.07777
0.01013
0.07689
0.115629 49.49640

g
(Sept.,85)

08514
¢.1i131
0.06183
0.09543 Canals running
0.11133
0.05783
0.16255
0.06477 74.65700

4
{Oct.,85)

0.02681
0.00885
009579
0.01803 Canals running
0.01185
0.01797
0.02241
0.03824 26.5601

§
(Nov. 85}

oI ONA B W o0 A b W R 00 A O e N[00 S B W 00 S L R e

Total 317.61032

0 Total simulated recharge in all the Stress periods =317,61032 MCM
2} Estimated recharge due to return flow from June to Oct.85= 180.00 MCM
(canals + wells)

) Recharge due to rainfall =317.61032 - 180
=137.61032 MCM

4 Mean areal rainfall over the basin =971 mm = 801.07 MCM

(3) Rainfall -- Recharge Coefficient (Lumped basis) =137.61032/801.075
=0.1717
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7.2 Analysis of Rainfall Recharge

The recharge rates as obtained above (Tabie 7.2) are comprised of recharges
occuring from two sources viz., recharge from rainfall, and recharge from retumn flow.
Since the study aims at establishing the recharge from rainfall alone, it is accomplished by
subtracting the recharge due to return flow from the total simulated recharge. The recharge
due to return flow of irrigation water over 5 months of simulation period is estimated as
180 MCM (NIH Repert CS -117). This lumped estimate is worked out using
G. W .Estimation Committee norms for the average quantity of irrigation water delivered at

the outlets,

The recharge from rainfal! thus computed, which is again a lumped estimate over
the study area, is obtained as 137.61032 MCM (Table 7.2). Based on the mean areal
rainfall during the period, the rainfall-recharge coefficient (recharge due to
rainfall/rainfall) is also calculated for the study area. The lumped recharge coefficient

calculated as 0.1717 is found well within the prescribed range for the alluvial soils.
7.3  Spatial Variation of Rainfall Recharge

The above analysis gives a lumped estimate of rainfall-recharge coefficient over
the study area. The recharge rates as observed from Table 7.2 are, however, found to vary
in different zones. An attempt is, therefore, made in the present section to quantify the

spatial variation in recharge coefficient across the study area.

The distribution of rainfall-recharge coefficient in different recharge zones is
worked out and presented in Table 7.3. The total depth of simulated recharge in each zone
is calculated by summing up the optimized rates of recharge of al iods i
zone. As ihe entire study area is covered by a well distributed canal and distribution
network system, it is assumed for the analysis purpose that the total recharge due to return
flow (which is estimated on lumped basis as 180 MCM) is uniformly disiributed over the
study area of 825 sq. km., and thus contributes to a tune of 0.21818 m everywhere. With
this assumption, the recharge due to rainfall in each zone is calculated and the rainfall-

recharge coefficient established for each of the zones.
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The rainfall-recharge coefficient is found to vary from 0.11 to 0.25 in different
recharge zones. A study of location of these recharge zones (Fig.6.1) gives a definite trend
of spatial variation of recharge coefficient across the study delta. Based upon the

coefficient values, all the recharge zones are regrouped into following three reaches:

1. Upper reach Zone 1
2. Middle reach Zone 2,3,4,5,6 and 7
3, Lower reach Zone §

The lower reach comprising an area of 225 sq.km. (27%) along the coast has a
lowest recharge coefficient of 0.11. The highest recharge coefticient of 0.25 is obtained in
upper reach which accounts for an area of 176 sq.km (21%). While the recharge
coefficient in most part of the middle reach (335 sq.km.; 41%) varies in the range of 0.145
to 0.176, an area of about 89 sq.km. (11%) in this zone is found to have a higher
coefficient which ranges between 0.206 to 0.22. This higher value might be the effect of
some local phenomenon which needs to be investigated in the field. One of the possible
reasons for variation in recharge coefficient from 0.11 to 0.25 might be the effect of water
table depth in these zones. As stated elsewhere in the report, the average depth of water
table below ground level during pre-monscon period varies from about 1.75 m in the
lower reach to about 7 m in Upper reach. The average seasonal water table fluctuations (1.
pre to post monsoon) in these zones are observed to vary from about 1 m to about 4 m
respectively. This indicates that the aquifer in the lower reach can get fully recharged with
smaller amount of rainfall as compared to that in the upper reach. Once the water table in
the lower reach rises to its highest position (i.¢. close to the ground surface), the rainfall in
excess of aquifer recharge capacity goes as runoff and thereby reduces the recharge-

¢oefficient in this reach.

54



Table 7.3 : Distribution of Rainfall-Recharge Coefficient in Different Recharge Zones

Recharge | Total depth of Depth of Depth of | Mean areal Rainfall-
zones simulated recharge due to | rainfall | rainfall over recharge
recharge in the return flow | recharge | the recharge | coefficient
zone over five | over five stress (m) zone during
stress periods periods (m) five stress
{m) periods(mm)
() 2 ) W=2):(3) (5 (6)=(4)*1000/(5)
1 0.46930 0.21818 0.25112 1005.5 0.2497
2 0.36950 0.21818 0.15132 1042.9 0.1450
3 0.39407 0.21818 0.17589 999.3 0.1760
4 0.35129 0.21818 0.13311 916.0 0.1453
5 0.42896 0.21818 0.21078 958.7 0.2198
6 0.42363 (0.21818 0.20545 998.0 0.2058
7 0.37493 0.21818 0.15675 947.2 0.1654
8 0.32181 0.21818 0.10363 942.0 0.1100
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FIG. 7.4 : CONTOURS OF OBSERVED AND SIMULATED HEADS
FOR STRESS PERIOD 4

59




10004

OBSERVED HEADS {m)
SIMULATED HEADS ()

: 0§ 3 § § 3§ °¢B
FIG. 7.5 : CONTOURS OF OBSERVED AND SIMULATED HEADS
FOR STRESS PERIOD 5

60




8.0 CONCLUSIONS

The MODINV was used to estimate the rainfall recharge during monsoon season
in the Central Godavari Delta of Andhra Pradesh. Based on the results of the study, the

following conclusions are drawn :

(1)  The inverse modelling technique is a viable distributed approach for estimating the

rainfall recharge.

{2) The distributed values of rainfail-recharge coefficient in the lower, middle and
upper reaches of the study delta are found to vary from Q.11 to 0.25 during the

morsoon period of 1985,

(3}  The results of the study were also analysed to compute the recharge coefficient on
a lumped basis. The recharge coefficient for the study area as a whole is found to
be 0.1717.
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