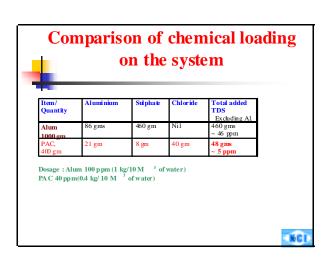


SN	Characteritics	Unit	PAC High Basicity grade	Alum
1.	Aluminium as Al Q ,Min.	%	10.2	15.0
2	Chloride as C1 Max.	%	10.5	N/S
3.	Basicity,Min.	%	64	0.5
4.	Sulphate as \$\O_4^2, Max.	%	2.5	N/S
5.	Specific gravity at 25° C,Min.		1.18	N/S
6.	Viscosity (dynamic) at 20° C	mPa	3-30	N/S
7.	Insoluble, Max.	%	0.5	0.5
8.	pH (5% solution)		2.5-4.5	2.7
9.	Toxic sulstances,Max.			
	i.Mercury (as Hg)	ppm	0.2	N/S
	ii.Arsenic (as As)	ppm	5	6
	iii.Cadmium (as Cd)	ppm	6	N/S
	iv.Lead (as Pb)	ppm	30	30
	v.Iron (as Fe)	ppm	100	700
	vi.Manganese (as Mn)	ppm	15	N/S 131



Intangible Benefits

- 1. More effective removal of pathogenic bacteria, viruses, heavy metals, dissolved organic carbon
- 2. Reduction in frequency of back wash of filters
- 3. Savings due to less sludge disposal
- 4. Higher yield of treated water due to less sludge formation (30-40% of alum)

Advantages in DM process

- 1. Lesser increase in ionic load on the system
- Reduced resin regeneration cost due to reduced consumption of HCL & Caustic
- Savings in raw materials (natural resources) like power (eg. for 1MT caustic 3000 KW power)
- Increased life of expensive ion exchange resins
- 5. Reduced water loss

Comparative usage of PAC vis-à-vis alum in a Water Treatment cum DM Plant (Capacity - 24 00 M³/day, Turbidity RW - 100 NTU)								
Chemi calls for clarification	Consumption Per month(Kg.)	a-	SO ₄ -	Ca**	Total Kg.	Caustic Iye Eq.Con) @ Rs. 11 per kg* 70% efficiency	HCI @ Rs. 3.50 per kg 80% efficiency	Total Savings (Rs.) per month
Alum80ppm (192 Kg/day)	5760 Kg	-	2490 kg	-	2490 Kg	6150 Kg Rs. 67650/-	-	
Lime 20 pp m 48 Kg /day	1440 Kg	-	-	780 Kg	780 kg	-	6000 Kg. Rs.21000/-	
Total:Alum& Lime 240 Kg./day	7200 Kg				3 27 0 Kg	6 15 0 Kg Rs. 6 76 50 /-	6000 Kg. Rs.21000/-	
PAC@40%_32 ppm 76.8Kg.day	2304 Kg	230.4 kg	36.84 Kg	-	267 Kg	864 Kg. Rs. 9504/-		
Difference PACVs Alum	4900 Kg.	+ 230.4 kg	-2453 -KG	- 780 kg	-3 003 kg	5 28 7 kg Rs. 5 81 57 /-		Rs. 79157 /-
Annual Savings on use of PAC-10 ~ Rs. 9.5 Lacs (~ Rs. 1.08 per. M*) for 2000 MW plant averages consumption 2400 – 3000 KL/day – 9-12 lacs/yea								

Performance of PAC-10 at a Thermal Power Plant – Case Study							
-	Alum (non feric	PAC					
Consumption/day	900 Kg.	320 Kg.					
Running Filters for 800 KL/Hr.	4 filters required	Only 2 filters required, saving of 200 KL/day water used for back washing					
Chemical Consumption	52.5 gm/KL with 0.1gm/KL PE	Only 18 gm/ KL without Polyelectrolyte					
Treatment cost	Rs. 0.26/KL	Rs. 0.12/KL					
Treatment cost/annum	11.5 Lacs	4.1 Lacs					
DM Water output from resin beds	Lower	Higher (~ 40%)					
Desludging Frequency	Higher	Lower(Almost half)					
Consumption of NaOH & HCI for resin regeneration	Higher	Lower (Saving of approx. Rs. 0.86/KL)					
Life of Resin	More	Less					
Pumping & maintenance Cost	Less	Higher					
Dosing Volume	60 times higher	1/60 th on ly					

Performance of PAC-10 at a Thermal Power Plant (U.P.), DM Process

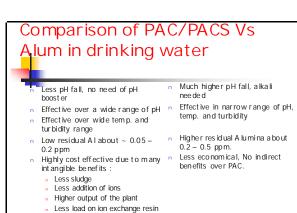
- n Annual Savings by Using PAC Vs Alum
- Savings in chemical cost/year Rs. 7.4 Lacs
- Savings in energy consumption Rs. 0.44 Lacs
- Savings in maintenance cost Rs. 2.6 Lacs
- Savings of HCT & Caustic Soda Rs. 4.5 Lacs
- n Savings in labour cost 0.94 Lacs
- n Total Direct Savings: 15.88 Lacs/anum
- Addl. Benefits: Longer resin life saving in resin make up costs

Plant results PAC in Drinking Water

Summary of Plant Scale Usage

- End result obtained with 3 ppm of PAC dosage is comparable to 10ppm of alum dosage
- · This implies, dosage of PAC will be only 30% of that of alum dosage.
- · Significant financial savings in chemical cost, labour, electricity & plant maintenance

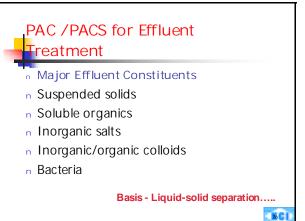
2/18/2 011 5:4 4 PM

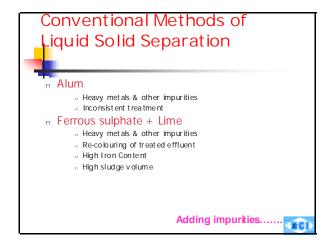

Comparison of PAC/PACS Vs Alum in drinking water

n PAC/PACS $[AI(OH)_aCI_b]_n$ or $[AI(OH)_aCI_b(SO_4)c]_n$

- N Strong coagulating power due to polymeric AI ions, e.g. $\left[\text{AI}_{13}\,\text{O}_4\,(\text{OH}\,)_{24}\,(\text{H}_2\,\text{O})_{12}\right]^{-7+}_{\text{n}}$
- Ready to use, homogenous liquid saves time, labour and money
- Lower Consumption(30 50% of
- n Full charge neutralization,
- n larger & stable floc formation
- Ouick sedimentation

- n Alum Al₂(SO₄)₃. 18 H₂O
- Low coagulating power due to only monomeric & oligomeric
- Non-uniform solid, requires Pre par ation of solution
- Higher consumption
- Incomplete charge neutralization due to smaller & less stable flocs
- n Slow se dimentation

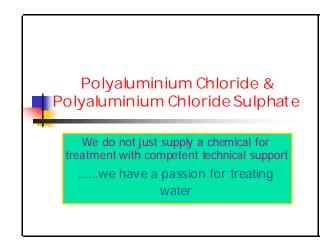



25

Lower power & chemical demand

Savings on labour charges

Less capital cost



Summary Benefits at a glance

- Dosages Lower and consistent
 - 🗷 Small drop in pH value and less/no need of pH booster
 - ♣ Improved water quality
 - Higher out put from the existing plant/ smaller treatment plant is required
 - Power saving since no power requirement for making
 - Reduced chemical loading means less addition of ions(TDS)
 - Much lower residual Aluminium
 - Easily manageable sludge
 - Efficient even at low temperature

