

	Major Water Recycle during 200 Phulpur	e /Reuse S 4-2008 Unit	Scheme	6 IFFCO
Sr. no.	Water Recycle / Reuse Scheme	Investment (Rs. in Lakhs)	Annual water Saving (m ³)	Pay back
1.	Increase in Cycle of Concentration of Cooling Tower (from 6.0 to 9.0)		603662	Im me di- ate ly
2.	Direct Recycling & Reuse of Turbine Condensate in Amm. – II Plant	0.92	23100	4.3 month
3.	Recycle of CDR effluent for process use as cooling Tower make-up through Water Softening Plant	0.44	118800	3.86 month

	Major Water Recycle during 200 Phulpur	e / Reuse S 94-2008 Unit	Scheme	S IFFC
Sno.	Water Recycle / Reuse Scheme	Investment (Rs. in Lakhs)	Annual water Saving (m ³)	Pay back
4.	Installation of Rain Water Harvesting System	13.14	3600	
5.	Collection and reuse of rain water in process through Mist Cooling System	316.72	3900	
6.	Installation of Water Spraying System in Ammonical Guard Pond	5.50	32200	17.1 month

Year		Industrial		Colony water consumption			
	Consumption m ³ / day	Average No. of employee per day	Per capita consumption (Ltr per person per day)	Consumption m ³	No of person	Per capita consumptior (Ltr per person per day)	
2004-05	350	1185	295	3800	4000	950	
2005-06	350	1118	313	3800	4000	950	
2006-07	300	1063	282	3800	4000	950	
2007-08	300	1967	281	4100	4500	911	

INNOV	ATIVE	PRO	JECT	No	2		(FFCO
${f B}$ low-down reduction	due t	o im	prove	ed CC	DC fr	om 6	to 5	
	Plant	Cooling Waterflow, m3/hr	Cooling Range, deg.C	Evaporation, m3/hr	Make up COC =6	Make up COC = 9	Blow-down COC = 6, m3/hr	Blow-down COC = 9, m3/hr
State of the local division of the local div	Ammonia C. T- I	13.000	12	279	334	313	56	35
	Urea C.TI	10 000	10	179	214	201	36	22
	Power C T I	32 00	5	29	34	32	6	4
and the second sec	Ammonia C. T- II	20 000	7	250	300	281	50	31
A long the state of the state of the	Urea C.TII	17 000	7	213	255	239	43	27
COC = 6	Power C T II	48 00	5	43	51	48	9	5
	Benei	68000 fits:	· .	991	1189	11 15	198	124
STATES OF THE OWNER WATER OF THE OWNER OF	∨ Reo	ductio	n in Bl	ow-do	wn = '	1776 m	13/day	
	∨ Yea	arly Ra	aw wate	er savi	ng = =	=60 366	2 m3	
	∨ Red in Col reduc	ductio Id lime ed ma	n in Hy softei ike up	ydrated ning pi water i	l lime rocess requir	consu s due ement	umptic to t.	on
COC = 9	∨ Yea	r of In	pleme	ntatior	n: 200	4-0 8		

INNOVATIN	/E	PROJECT	No	3	IFFCO
Recycle of CDR Efflu Year of Implementation: 2006-0 Cost : Rs. 0.44 Lakh. Payback: 3.86 months	ient 7 Ra (1	Water in aw Water Savin Reduction in o 18800 m ³ per y Saving of Elec	to Plant og (118800 quantity of ear) trical energ	Proce m ³ per ye the efflue gy (39204	eSS ear) ent KWH
	pe	er annum)			
	S.N.	Composition	Design Value	CDR Effluent Actual	Fresh Raw Water
	1.	Na ₂ SO ₃	0.02-0.03 Wt%	0.012 %	-
	3.	Na ₂ CO ₃	0.04-0.05 Wt%	0.10%	-
	5.	pH	7.0	7.80	7.6
	6.	Colour	None	None	None
	7.	Total AmmN (as N)	0	25.0pp m	nil
	8.	TKN (as N)	<50 mg/L	29.5 ppm	nil
	10.	COD	<50 mg/L	55 ppm	-
	14.	TDS		800 ppm	360

I NNOVATI VE PROJECT No. - 4 Recycle of Turbine Condensate in Ammonia Plant -II

Year of implementation :2006-07 Cost : Rs. 0.92 Lakh

IFFCO

Benefits: ∨ Raw Water Saving (23100 m3per year)

 \vee Reduction in quantity and improvement in quality of the effluent (23100 m3per year)

 ✓ Saving of required chemical (HCI – 100 MT per Annum and NaOH – 89 MT per annum) for regeneration of condensate
Polisher Unit for this condensate
water.

 \lor Saving of Electrical energy (80750 KWH per annum)

	Water Monitori	na Pon	IFFCO
_		iy nep	
Α.	Total Raw water Consumption.	15.11.2008	28787 KL
В.	Raw Water Consumption per M.T. of Urea.	15.11.2008	5.49 KL
C.	Effluent Water Reuse/ Recycle Effluent Recycle pump Running at Guard Pond.	1 2 Y <mark>es</mark>	3 4 No
1	R O Plant	Yes	No
2.	Bottom Ash Deashing to Old Ash Pond.	Yes	No
3	Fly Ash Desshing to New Ash Pond	Yes	No
4.	Old Ash Pond through 6" direct line from Guard Pond.	Yes	No
5.	Coal Yard Spray.	Yes	
6.	Cordet	Yes	
			Continued

7. Treated Sewage Water from STP	Yes	No
water softening Plant.	Yes	No
8. Lawn Irrigation in Township.	Yes	No
9. Extra Pump Running.		No
10 Hydrolysed Water from Urea-I.	CPU	
Hydrolysed Water from Urea-II.	CPU	
11. In effluent Holding pit from Urea-1/II, AmmII.	Yes	No
12. Leakage / Water Loss U/G		
Raw Water Leakage		
1. Near Urea-2 silo under maint.		

Recognition on Environmental Performance IFFCO Year 2006-07 •Best Chief Executive Gold Award to Unit Head of IFFCO-Phulpur from Public Sector Today, Hyderabad. Best Technical Paper Award by FAI on the Paper - "Implementation of Energy Saving Project at IFFCO Phulpur Unit ". Year 2005-06 • Innovative Project Implementation Award 2005 in the field of Water Management by Confederation of Indian Industry (CII), GBC, Hyderabad. National Award for "Excellence in Energy Management-2005" by Cll-Sohrabji Godrej Green Business Centre - Chennai National Award for "Efficient Water Management-2005" by CII- Sohrabji Godrej Green Business Centre - Chennai Rajiv Ratna National Gold Award for "Best Pollution Control Implementation (2004-05)" from Public Sector Today, Hyderabad Year 2004-05 National Energy Conservation Award (awarded in Dec. 2004) - from **Ministry of Power**

