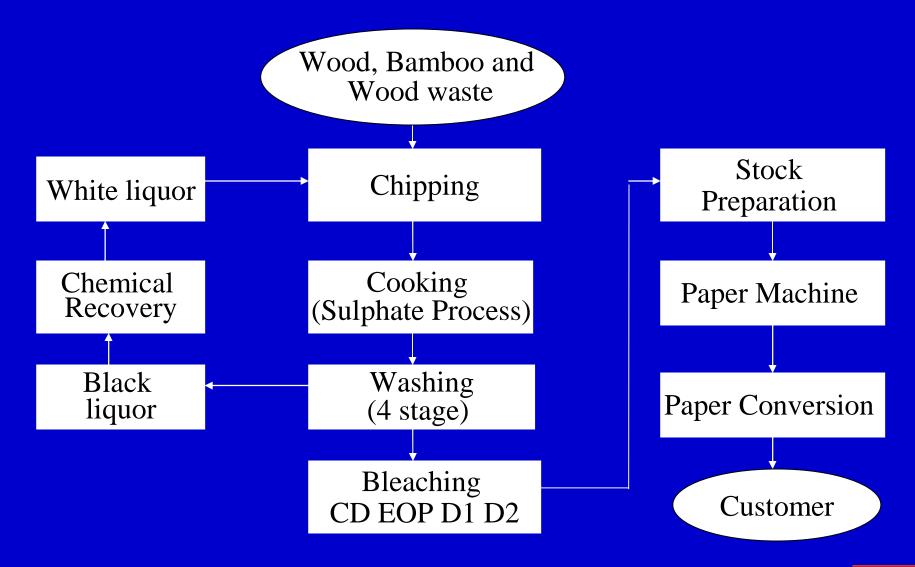
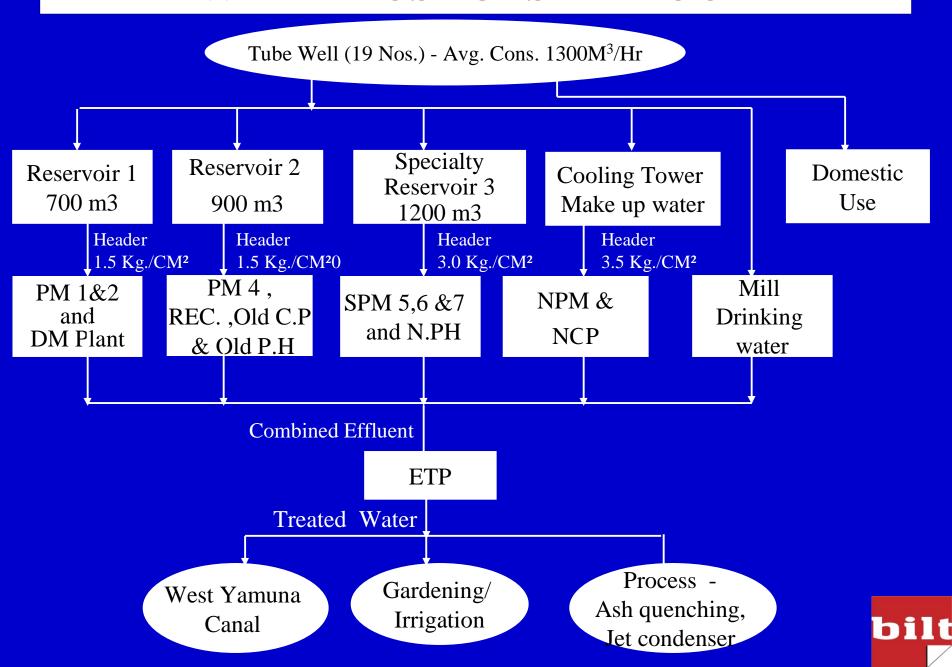
EXCELLENCE IN WATER MANAGEMENT AT UNIT-SHREE GOPAL

Presented by
Ballarpur Industries Ltd.
Unit- Shree Gopal
Yamuna Nagar
AN ISO 9001:2000 COMPANY

BILT-UNIT SHREE GOPAL AT GLANCE


- Production 81,442 MT per annum (2006-07)
- Turnover Rs. 392 crore
- Uncoated Writing/Printing Coated paper/Board & Industrial grade papers
- Matrix & Royal Executive Bond
- Customers-leading printers in the country



FLOW CHART-PAPER MAKING PROCESS

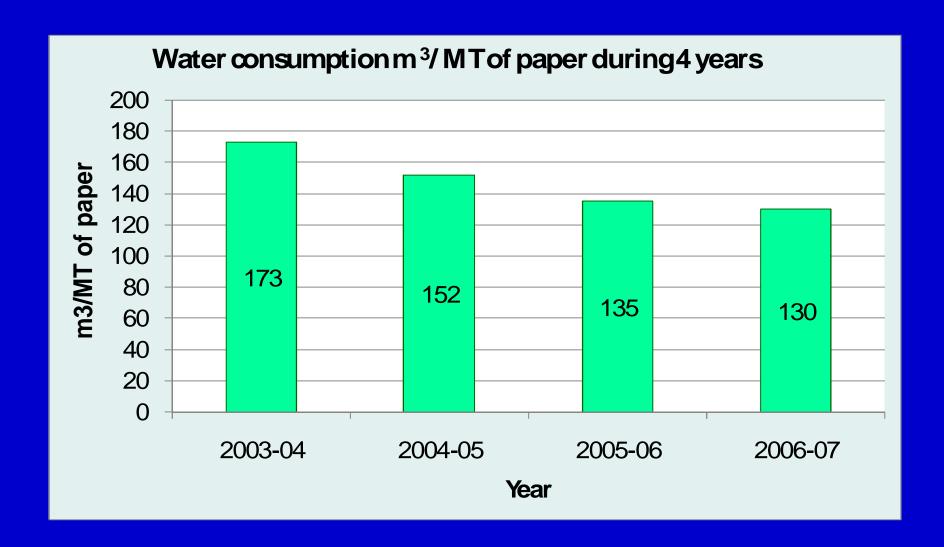
WATER USAGES LAYOUT

STEPS FOR ENVIRONMENTAL IMPROVEMENTS

- Ø Water conservation
- Ø Waste water management
- Ø Utilization of treated effluent
- Ø Rain water harvesting
- Ø Lime mud management
- Ø Air pollution control measures
- Ø Use of wood waste i.e. Veneer waste, Rolla, etc.
- Ø CREP

Major water conservation projects implemented (2003-04 to 2006-07)

S.No	Activity	Water saving m³/hr.
1	Use of special type gland packing in 20 pumps/refiners	10
2	Re-use of pope reel and compressor water to water reservoir	30
3	Use of barometric condenser water of ClO2 in pulp mill	15
4	Use of disk save-all clear water on wire showers and wash roll edges at all the machines.	75
5	Use of treated effluent for gardening in mills & colony	35


S.No	Activity	Water saving m ³ /hr.
6	Use of D1 filtrate on E/O screw conveyor for pulp dilution.	25
7	Reuse of water on all machines vacuum pump by passing through cooling tower.	115
8	Use of machine back water in consistency controller and pulp dilution at pulp mill	28
9	Stopping of over flow of jet condenser pit and reduction of fresh water at chemical house by putting level controller & pump for circulation	35
10	Reduction in use of gland cooling water by providing Macstar packing (36 pumps)	14

S.No	Activity	Water saving m ³ /hr.
11	Push button type taps to be provided in Bathrooms/Toilets.	1
12	Installation of Duplex filter for spray showers at M/C 1&2.	30
13	Modification of feed pump to supply M/c 1,2&4 back water to brown stock washer	15
14	Thickener shower of m/c 1&2 replaced with new showers	8
15	Back water hose pipe provided near thickener for cleaning thickener of PM 1&2	8
16	Use of treated effluent in jet condenser, thus saving fresh water	200

Considerable reduction in water consumption from 173 m³/MT of paper (2003-04) to 130 m³/MT of paper (2006-07).

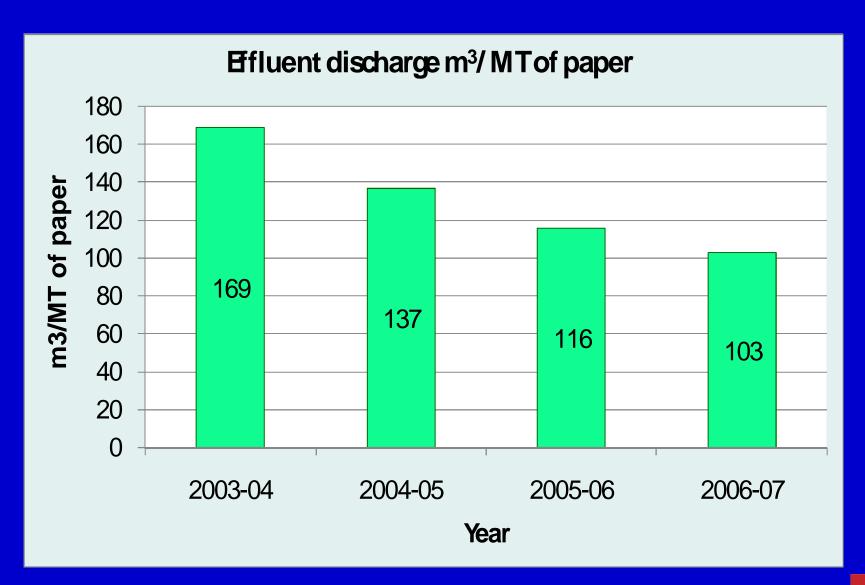
Year	Annual Water	Production	Specific water
	Consumption		consumption
(April-March)	m^3	MT	m ³ /MT
2003-04	12348760	71412	173
2004-05	11556900	75975	152
2005-06	10759770	79876	135
2006-07	10565900	81229	130

- Present water consumption: 124m³/MT of paper

WASTE WATER MANAGEMENT

Activated sludge process consisting of Primary clarifier, Aeration tank, Secondary & Tertiary clarifier.

- Design Capacity : 53000 m³/day - Operating Capacity : 25000 m³/day


Introduction of tertiary clarifier in the treatment facility has significant effect in reducing the SS, BOD and COD

Data showing the compliance to environmental norms

Particulars	Unit	HSPCB norms effluent	Treated water effluent
рН	-	7.0-8.5	7.2 - 7.8
BOD	ppm	30	10-14
COD	ppm	350	100-120
Suspended solids	ppm	50	15-30
AOX	Kg/MT Paper	<1.5	0.6-0.7

WASTE WATER MANAGEMENT

PER CAPITA WATER CONSUMPTION

Industrial

Consumption	Average Employees per day	Per capita consumption
\mathbf{M}^3		(liters/person/day)
1000	2144	466

Colony

Consumption M ³	No of persons	Per capita consumption (liters/person/day)
2600	5350	485

The figure is based on the average of 2006-07. This includes water consumption at Temple, Gurudwara and Community centre

A – PROCESS:

- Ø Raw Material Wetting: 80 m³/day
- Ø Coal Ash Quenching: 1000 m³/day

Ø Ejector Cooler at soda recovery evaporators: 400 m³/day

ØJet condenser of the evaporators : 4800 m³/day.

Ø Broke chest pump for gland cooling at 8 pumps

: 100m³/day

Ø Chemical house pumps for gland cooling at 6 pumps

 $: 80 \text{m}^3/\text{day}$

: 200m³/day

B – GARDENING:

The excess treated effluent is utilized for gardening in mills, colony and wetting play grounds. :180 m³/day.

C – IRRIGATION:

- Ø Cultivation of paddy crops.
- Ø One acre land for sugarcane crops.

Motivation of formers to use treated effluent for irrigation/ plantation.

RAIN WATER HARVESTING

Ø Two completed (one inside the mill and one in colony)

Ø Five more are in line at different locations in side the mill and colony.

At mill

At residential garden

WORLD BENCHMARK

	National	International	CPCB Benchmark
	Benchmark	Benchmark	120 m ³ /MT of paper
			as per CREP after
			March'07.
Waste Water			120 m ³ /MT of paper
Discharge	*	**	as per CREP after
(m^3/MT)			March'07.
Discharge	*	**	as per CREP after

**Since we have multimachines, it is not possible to achieve the world benchmark.

^{*}Mills are different based on the raw materials used, products manufactured, no. of machines used etc. There is no authentic national bench mark figures.

STRATEGIES ROADMAP

Ultimate Target/Objective – 100 m3 (within 3 years) and

- 80 m3 (within 5 years)

Strategies:

- Ø Optimizing the pressure of process water line wherever possible.
- Ø Installing of better efficient washing equipment.
- Ø Segregation of vacuum sealing water and re-using it while passing through cooling tower at PM-5 & 7.
- Ø Installation of fiber recovery system (Disk filters) so as to reuse the clean filtrate in place of fresh water wherever possible at PM-5.
- Ø Recycling of sectional waste waters within the process itself.
- Ø Use of treated effluent for wood and bamboo washing.
- Ø Use of treated effluent in fire hydrant, gardening and plantation activity.

SUSTAINABILITY

- Ø Water consumption review
 - Daily
- Ø Water consumption project review
 - Weekly
- Ø Communication through e-mail to all process/concerned heads Daily
- Ø Installation of water flow meters on PM- 1,4, 5, 6 & 7 respectively to monitor water consumption on daily basis.
- Ø Further addition of meters at PM-2

Review meeting

- By Functional Head

DGM(PERC) 12.11.07				
Tube-well	Tube-well	Tube-well	Raw Water	SHUT
No.	Initial Reading	Final Reading		HRS
1	57717	57855	1380	
2	29054	29193	1390	
3	629159	629490	3310	
4	46480	46802	3220	
6	612152	612152	0	24
7(N)	806656	808281	1625	
8	86985	87102	1170	
9	124969	127124	2155	
10	5342	5482	1400	
12	73055	73404	3490	
14	608281	609482	1201	
15	339	462	1230	
16	43532	45968	2436	
17	818290	819581	1291	
18	77199	77327	1280	7
19	23950	23980	300	21
20	788253	789261	1008	
21	6079	6297	2180	
22	231367	232712	1345	4
			31411	56
			1308.79	343314
TotalF	Total Raw Water		TODATE	374725
Average Raw water(M3/Day)		31227		

INNOVATIVE PROJECTS

Ø Use of treated effluent in the Jet Condenser in the Chemical House for vacuum generation and recirculation of used treated effluent back to ETP. The requirement of treated effluent for Jet Condenser is $4800 \text{ m}^3/\text{day}$.

Vacuum Pump

Vacuum generation

Designed - Fresh water requirement : 240 m³/hr.

Actual - Fresh water consumption : 200 m³/hr.

: 625 mm of Hg

Since, fresh water has been replaced with treated effluent

Therefore, Saving in terms of money : Rs.28.0 lac/annum

By the use of treated effluent, there is a scaling inside the pump and it is being cleaned mechanically after every four months during the planned shut.

INNOVATIVE PROJECTS

Ø Use of disc save-all clear water on wire showers & wash roll edges at all m/cs. Fresh water saving of 1450 m³/day at PM#1&2.

Quality of Clear water:

pH of lean water : 6.7

Suspended solids : 50-60 mg/l

Filler in lean water : 0.002 MT/hr

Fiber in lean water : 0.001 MT/hr

Use of back water in wire shower on PM#1&2 : 60 M³/hr

Saving of Filler : Rs.30.0 lac/annum

Saving of Fiber : Rs.63.8 lac/annum

Saving of water : Rs. 8.0 lac/annum

Total saving : Rs. 102 lac/annum

Saving due to Krofta : Rs. 70 lac/annum

Net additional saving : Rs. 32 lac/annum

INNOVATIVE PROJECTS

Use of barometric condenser water of ClO₂ plant in pulp mill.

- Fresh cooling water is being used in barometric condenser and was drained after use due to high temp 50-55°C and traces of ClO₂ in water.

Analysis of condensate water:

pH : 7.1

Color, Pt-Co unit : 4.0

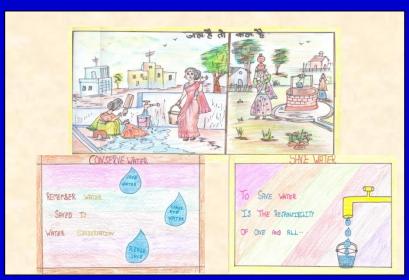
P. Alkalinity, as CaCO₃ : Nil

M Alkalinity, as CaCO₃ : 235 mg/l

Iron content : 0.2 mg/l

ClO₂ content : Traces

This water is suitable for the use of pulp mill and being used in pulp mill to generate hot water.


- Fresh water feed in condenser : 15 m³/hr.

- Running hours of plant : 14.5 hrs.

- Fresh water saving : 220 m³/day

AWARENESS: WATER CONSERVATION



AWARENESS: WATER CONSERVATION

Slogans displaced at various locations in mills

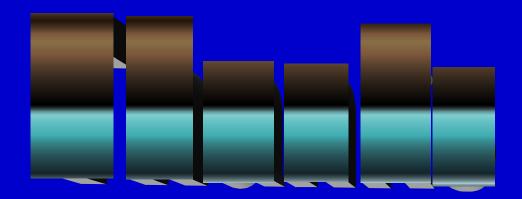
AWARENESS: WATER CONSERVATION

Inside the mill – Chemical House

जल अमुल्य है नल को खुला न छों

Inside the mill – Filler unloading site

Mill Gate - Local community Outside the mill – Temple


Inside the mill – Pulp Mill

Inside the mill – Blade coating

Slogans displayed at various locations inside the mills /public places

