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ABSTRACT

It has been recognized that processes in natuarl stream environ ments are inherently
random. The ability to quanitify the probabilistic status of stream environments is of vital
importance in water quality management decision making This report presents a
methodology to asscas the probability distribution of dissolved oxygen based Strecter-Phelp
equation. The methodology involves, the use of First-order analysisand Monte Carlo
simulation to analyze the uncertainty associated with dissolved oxygen. The mean and
standard deviation of the parameters hvac been assmned same for studied probability
distributions.

The crtical DO is found to be approximately normaily distributed. The mean value
of DO at the critical location is found to be more or less same, irrespective of the method
used. But the level of uncertainty associated with the DO is found to be considerably
different. The Monte Carlo simulations with log-normally dsitributed input is found to give
the lower uncertainty in the DO levels.

For estimation of travel time, Monte Carlo simulation with lognommally distributed
input variables is found to be a preferable method, For the over all DO profile in the
stream, First order amalysis predicting the same DO level as given by Monte Carlo

simulationand lower leve) of uncertainty, is found to be more justified



1.0 INTRODUCTION

A major portion of the complexity associated with water quality modelling and
prediction is the inherent randommess exhibited through the stream environment. Not only
arc the physical and biological processes not clearly defined, but an impoeing number of
uncertainties are associated with the various processes occurring with in the stream
environment. Several researchers have already attempted to analyze these uncertsinfies.
Loucks and Lynn (1966) investigated the effect of inhorent uncertainty duc to the natural
variations in stream flow and waste flow on the probability distribution of dissolved oxygen
(DO), Padgett and Rao (1979) presented a joint probability distribution for biochemical
oxygen demand (BOD) and (DO), and Kothandaraman and Ewing (1969) and Chadderton
et al. (1982) have investigated the effect of stochastic nature of the model parameters in
assessing the probability distribution of DO deficit. In achicving effective environmental
control, the procedure of Waste Load Allocation (WLA) should consider the natural
inhorent randomness of water quality parameters. The allocation procoss invoives the
estimation of stream assimilative capacity. Characterisation of point and diffuse source
inputs, reserve capacity allocation, and & subsequent assignment of available capacity to
designated discharges. Procodural steps require a determination of the Total Maximum
daily load (TMDL.) and a distribution of assimilative capacity in an equitable manner.

Realising the existence of such uncertaintics in water quality modelling, the
prediction of DO deficit or DO concentration with in a given reach of stream is no longer a
deterministic exercise. Rather, the DO deficit must be treated as a random vaniable. In
probabilistic water quality analysis, it is typical to deal with the problems of assessing the
probability of water quality violation. To perform such probability computations,



knowledge about the statistical propertics and the distribution of water index mmst be
N :

Mwm-mmmmmhmmmmof
stream DO, most of these studies have been concerned with the varisbility of DO
concentrations due to model parameter uncertainty (Kothandaraman and Ewing 1969;
Homberger 1980; Chadderton ct al. 1982). However, there have been some attempts to
dertve analytical expressions for the exact probability distribution associated with the DO
deficit. Thayer and Krutchkoff (1967) utilized aq stochastic birth and death process to 'l
obuhmmmdmfmmemobabﬂiycﬁmibuﬁonofmdeﬁci.MMKmﬂ’
(1967) utilized a stochastic birth and death process to obtsin an oxpression for the
probebility distribution of DO concentration without considering the uncertainties of the
model parameters. Esen and Rathbun (1967) assumed the reareation and deoxygeaation
rates to be normally distributed and investigated the probability distribution for DO and
BOD wsing a random walk approach. Notably, Padgett ¢t al. (1977) developed a joint
probability density function for the BOD and DO concentrations for solving a stochastic
differential cquation, and Padgett and Rao (1979) later developed a non-parametric
probability density function of BOD and DO.

From a practical viewpoint, the main disadvantage of cach of the aforementioned
methods is that the resulting probability distributions derived for the DO deficit are very
complicated. The required mathematical skills noeded for such sophisticated approaches
would make it difficult for most engincers to apply. Furthcrmore, all these analytically
derived probability distribution functions for the DO can only be obtained by using very
gimplc distributions for the model parameters such as uniform and normal. When



distributions other than those simple ones are used to describe the randomness of water
quality parameters (which could well be the case in reality), the analytical derivation of a
probability distribution for the DO would be extromely difficult, if not impossible.

Another approach that is frequently appliod by engincers is the Monte Carlo
simulation. The method has recently been incorporated into the enhanced QUAL2 model,
called QUAL2-UNCAS, by Brown and Barnwell (1987). This brute force cnumeration
scheme requires a large number of repetitions, which could be computationally expensive.
Ofcourse, with the advent of computing power and efficiency of computers, the weight of
such concern will be gradually diminishing. However, at the present time,  computational
efficiency and cost remain an important concer in practical eugineering problem sotving.

In support of a more tractable methodology, this study examines an approximate
approach 1o probabilistic water quality analysis in that the statistical moments of the DO

Aafirit are satimated by the firet arder snalusia The ¢ g taty
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tical moments eatimated are then

incorporated with an appropriate probability distribution model for the DO deficit.
However, practical issues that can be raised are: (1) Which is an appropriate probability
model for the DO deficit? and (2) if there is one such probability model , how sensitive is it
to the distribution of water quality WM? Theoretically, the exact probability
distribution of the DO deficit should change if the distribution of water quality parameters
is changed. However, from a practical view point, it is worthwhile to investigate the
appropriatencss of some commonly used probability models in. describing the random
characteristics of the DO deficit computed by the Strata-Phelps cquation. Because the
distribution of the DO deficit may in theory be dependent on the statistical properties of the

water quality parameters themselves. The candidate probability distributions included m



the study were normal, and lognormal. To characterize those distribution completely,
various statistical parameters must be known. To do this, the mean and variance of the DO
deficit were cstimated using first order uncestainty analysis. This information was then used
to compute the appropristc statistical parameters for cach of the candidate probability
~ models using the moment-parameter-relstionships that can be found in Hasting and
Peacock (1974) and Patel et al. (1976).



2.0 UNCERTAINTY ANALYSIS

Owrﬂwyeuz,apmguaioninﬂ:cnwdclﬁngofwaterqulityplmmhn

models were utilized, However, a fundamental characteristic of environmental engincering
phcnomemisﬂw&hmﬁmicsmchuﬁcmure.maddiﬁonwﬂwﬁequmtpmbhmﬁhvhg

Ceminly,dGWmﬁnisﬁcmode!smmhﬁmplertodcdwmmmuyh
contrast to the stochastic models. Howew,dowrnﬁ:ﬂsﬁcmodelscanpmdictonlydnm
orexpectedvaluueofﬂ:epmcmorwont-caseinnﬁonandﬂisiunaccepuble solution
fmmodcﬂhgmhavhgvmymaﬂmﬁnty.ﬁwmceﬂahtymhwdmwm
quality processes(attributed due 4 8 nmnberofmumu)isnotonlycompliutedbmdsowry
high in degree.

Thereisalwaysmelmcerl:imy,boﬁtinﬂwcvahuﬁonofﬁclddatamdhﬂwusc
of mathematical models to predict the outcome of natural processecs are siill not completely
mdmbodandthcﬁﬂmpremtaﬁonisuanﬂyoompﬁcawdmdmocosﬂymhphnmt.
Thmhﬂsosomeinhemtwﬁabﬂhymdmndonmmhmmprmmmeir
mecasurements. Thchﬁﬁalcondiﬁommayalsobermdnm,dﬂxerbecausemeaﬂmcnts
are biased by random variations. The model coefficients are random eithe because our

assessment is not prefect or because of random variations in measurements. Inputs may



also be uncertain because cstimates of future loadings, based on projections and future
wastewater technologics, may be biased.

With these types of considerations in mind, the intent in the following is to examine |
some of available stochastic modelling approaches. In the present study, the uncertainty is
considered implicidy with the dissolved oxygen model using first-order analysis md Monte

Carlo simulations.

2.1  FIRST ORDER ANALYSIS OF UNCERTAINTY

The method of first order uncertainty analysis can be used to estimate the amount
of uncertainty, or scatter, of a dependent variable due to uncertainty about the independent
variables included in a functional relationship. The method is applied with the assumption
that all covariances among variablos are zero. First order uncertainty analysis has been
described in detail by Benjamin and Comell (1970). Example applications have also been
presented by Burgess (1979) and Chadderton and Miller (1980).

The usc of first - order uncertainty analysis is popular in all ficlds of engineering
because of its relative case in application to a wide array of problems. The detailed theory
and mathematics of first order uncertainty analysis can be found in Benjamin and Comell
(1970) and Comell (1972). As an cxample of such use in the water quality ficld, Burges
and Lettenmaicr (1975) have utilised the method to investigate the uncertainty in
predictions of BOD and DO with in a stochastic stream environment.

Essentially, first order analysis provides a8 methodology for obtaining an estimate for
the moments of a random variable which is a function of one or scveral random variables.

It cstimates the uncertainty in a mathematical model involving parameters which arc not



knownwimcmﬁnty.Byuaingﬂmadaamlyds,mecmnbMeﬂ’ectofmcmaintyina
mode! fmmnﬂaﬁmaswcllasﬂwuseofumeﬂainparmeters,mbemmed.

Fhstordermcerlaintymaly&aischnacteﬁzcdbytwomajorcompomnts:(l)
Single moment (variance) treatment of random variables ; and (2) the vsc of first order
approximation of any functional relationship (c.g. the use of Taylor’s serics expansion ).
The first component implies that the random element of any variable is defined exclusively
by its first nonzero moment or simply the varianceof the random variable itself, Thus the
h:fonnaﬁonpataﬁﬁngmﬂlechmcterofamdmnvuiaﬂeispmﬁdedwldybyiumcm
and variance.

The sccond component states that only the first order torms in a Taylor’s scries
cxpmsionwiﬂbcuﬁﬁzedmmcmdyﬁsofﬁmcﬁomlmhﬁmnhipcmmirﬁngmdmn
variables or processes. Wrﬂ:cxcepﬁonofﬂleeﬂuaﬁonofﬂn mean (in which second
ordertemsmaybeinchadcdformepmponofaooom&ngforcomhﬂonmong
vuiablu),mymmnptmmmhwmulﬁghulhmﬁmordermﬂwupmﬁonreqm
morcinfo:maﬁonabomﬂicrmdomvadabhaﬂmﬂlouprovidedbytheirﬁnt and sccond
moments (Cornell, 1972).

Toplmmﬂlcgcneralmethodoloyofﬁmtordermdyﬁs,comiderarmdom
variable, Y, which is a function of N random variables (multivariate case). Mathematically,

Y can be expressed as
Y =g(X) 1)
where X = (X;, X ; .......... » Xx), 8 vector containing N random variables X, .

THough the use of Taylor’s expansion , the random variable Y can be approximated by
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Y= - X x X
g(X)+i§ll:ﬁX,-:l(X )+ zzg[ Txox, (XX D

)
in which X = (X; , Xz, ceveeee , and Xy ), a vector containing the mean of N random
variables and = represents equal in the sense of a sccond - order approximation.
To consider the corrclation among random variables X, , the second order

approximation of the mean (the expected value) of random variable Y is

Js
= E[f]=8(X). + 2 ,.,[ 7X. Xj]coV[X X ©

in which cov[X, ,X] is the covariance between random variables X; and X;. It should be
noted that the second term in equation (3) can be dropped if the random variables X, are
uncorrelated. In such a case, the resulting equation is the same as tho first order

Tt follows that the first order approximation of the variable of Y is

o) = var[Y]éiZ 5)(11@‘, ]cov[X,,X ] @)

=1 ;-1

¥ the X, and X are uncorrelated , equation (4) reduces to



2 ' @:[ 2 '
O,= — | o (5
"‘[ﬂ’ ¥

where = means equal in a first order sense and G';'ithcvuimcccorrespondingtorandom
variabie X; .

2.2 MONTE CARLO SIMULATION

MCS isa sampﬁngprocodtnhlwhichpossiblevaluesformcinpnnpmm
are selccted at random from appropriate pdfs and used in the model to produce ostimates
ofthcwtputs.MCSismorccmnpletcﬂ!mFOAmddoesnotreqtﬁremumpﬁomof
ﬁneaﬁlymdsnmﬂpmemvmimces.hdoeanﬁmmmnpﬁommﬁwmm
pdfsmdiscompmaﬁomnyhﬂmﬁwgemuﬂquuﬁhngOOmmmmoddnm.Thc
approachﬂhwwatedhﬂlefoﬂowhgﬁglmisacmaﬂyqlﬁtcshnplchcmccpt.m
deﬁlﬂngmeprobahiﬁsﬁcsummﬁmepmm!s,apaunetermhsclmdurmdom
ﬁnmdlcappmpdatemmﬁvmiawpdtThenmdclisnmwiﬁlﬂmepuametemmdﬂw
output notcd.ﬂﬂscnﬁrcproccssisW.Myﬁmes(~lW)WﬁngiﬂW
(~1500)esﬁmmfmmcompuu.1hueompubmﬂmmﬂyudpmbanﬂisﬂcam.1hc
means and variances are calculated . Approp:iatepdfsorprobabilityploumprcpued
and probabilistic statements made. Confidence intervals can be read directly from
probability plots without making a distribution assumption about the outputs,

Thehnporhnceofhdi\d@dpmmemhldctcrmhﬁngﬂwmcmaﬁnymiawd
“dﬂlpmﬁcmm-vaﬁabhcmbeassessedbycompuﬁngﬂlemmhﬁmbctwmﬂxemodel
outputs and the input parameters. Those parameters that are highly correlated with the



model outputs are obviously important since changes in the values of these parameters will
result in a corresponding change in the outputs from the models. On the other hand, if the
correlations between outputs and parameters is low, the parameter is not very influential in
determining the ourputs.

Two checks that should be incorporated into any MCS are an examination of the
correlation structure of the randomly generated parameter values and an examination of the
pdfs of the randomly gencrated parameter values. The correlation structure of the
parameters must statistically match the target corrclation structure. If the intent was io
generate independent rvs but in fact a high degree of correlation ends up in the generated
parameters, the output variance will be incorrectly cstimated. For example consider p1 and
p2 as two parameters that arc positively correlated with the model output but are
uncorrelated with cach other. If the generated “random” values of pl and p2 arc
significantly positively correlated, the variance and the uncertainty in the output of the
modelwillbcex;gcnued.

The fraction , F, of the total variance in model output attributablke to the ith

parameter based on 2 MCS can be estimated by computing

: (6

where r,; is the correlation between the output and the ith parameter and p is the number
of uncertain parameters. This is a very rough approximation and may be used for guidance
only. If the output variance is judged to be excessivo, equation 8 and 9 can be used to

determine which parameters are the biggest contributors to this uncertainty. Attempts can

10



ﬂwnbemadetomduceﬂwvnimceonﬂwsehﬂumﬁalpamnembygetﬁngbcm
cstimates for them.

Equation 7 can be used to estimate how much variance a particular parameter can
have and still achieve a target variance on O. For example if V, is the target variance, the

target variance on parameter py can be estimated from

1 2, 2
Vartp,)= 5.V, ~ 5 War(p) <

J e j

The variance reduction calculations provide guidance only. They are not
exact{obviously) sincewither FOAnor MCS is exact. Furthermore, it is not always possible
to reduce the variance of the input parameters. The results of a MCS can be subjected to a
multiple regression analysis in a further cffort to identify the important input parameters.
Regression coefficients relating a model output to the input parameters that are not

statistically significant are likely of little importance in determining the model outputs.

2.3 PERFORMANCE EVALUATION OF THE DISTRIBUTIONS FOR DO
The idea of applying first order analysis for estimating the first two statistical
moments of the DO deficit, along with a selection of an appropriate probability model for
the DO deficit, straight forward and practical. However, among the various probability
models that are commonly used, a practical question to be raised is, ‘Which probability
model {or models) best describes the random behaviour of the DO deficit in a stream?’ In

the following investigation, two parameteric ic. mormal and lognormal probability

A



distributions have been selected as candidates such that a wide spectrum of shapes are
reprosented.
Toevaluateﬂ!emhﬁwpciformanceofcachofmetwocm(ﬁdateprobabﬂity

distributions considered, three performance criteria with respect to prodiotion ability arc
adopted hercin: (1) Binsncss (BIAS); (2) mean absolute error (MAE); and root mean
squared error (RMSE). These criteria arc used simultancously in an attempt to identify the
best probability model. These critcria are mathematically defincd as

1. Biasncss:
1
BIAS = _[(x‘D s —X,)dp | t)

2. Mean absolute error:

M=£,xp-f-xpw ®

RMSE = [ jx,,-x) (10)

12



in which x; = the truc value of DO cotresponding to the pth order of probability; and x, ¢
= the estimate of x, determined from the assumed probability model, f, with its mean and
variance cstimated by the first-order analysis.

The test of goodness of fit is tested using the well known Kolmogorov-Smirnov
test.
3.0 BASIC WATER QUALITY MODEL

Strecter and Phelps (1925) were among the first rescarchers to recognize the
capacity of a water resource to receive and assimilate organic wastc material depended on
the oxygen economy. The first order reactions for deoxygenation and rcaevation were
combined to give the rate of change of oxygen deficit. The relationship among the
parameters affecting the in-stream dissolved oxygen concentration i given by Equation

(11):

K ~-K -K ¢ -Kt
D=ﬂ(e dt-—e Ay2wDe 9 (1)

K -K 0

a d
in which D = dissolved oxygen deficit (C4 - C) in milligrams per liter; C, = dissolved
oXygen saturation limit, in milligrams per liter; C = dissolved oxygen concentration, in
milligrams per liter K, = reareation rate cocfficient (basc ¢, per day); K4 = deoxygenation
ratc coefficient (base e, per day), L, = tnitial instream total ultimate biochemical oxygen
demand, in milligrams per liter, D, = initial instream dissolved oxygen deficit, in mq/)_ .

and t = time of travel from D, to D (days).

13



3.1  Application of first-Order Analysis to obtain DO Deficit Profile:

First order uncertainty analysis of the basic Strecter Phelps Dissolved Oxygen Sag
cquation is presented in this section. Basically the first order uncertainty analysis will
provide 2 measure of the uncertainty of the dependent variable, D in terms only of the
uncertainty in  independent variables: K, , K4, Ly, Dy and t; i.c., percentage of the
scatter of dissolved oxygen deficit predictions around the true deficit at any point along the
sag curve can be assigned to cach of the independent variables.

Taking the partial derivative of D with respect to cach of the independent variables.

oD

=e ™ 12
2D,~¢ (12)
5L, K. K
gD -K, L, (e — g K,Lpe™ -

= -Dte™ 14
7K. (K-K) "E-Ky (9
oD _ K, (o _ gy Kilote™ 15
oK, (K, -K)) K -K,
oD K|, .

= (Ke™ -K,e™)y K De™ 1
ot K -K € € 1K De (19

The first -order approximation to the tolal uncertainty in the dissolved oxygen deficit is
obtained by applying Equ. (5), the resulting equation is given by Equ. (17).

o, =(§|C,l )? (17)



The terms of Eq. 17 arc defined §y Eq. 18

8D 2D éD
= —_— ;C [ ', e —
C, é’Dod“' A é’l,,o"' C, aK.o','
4D 5D 18
C,=——0,:(;=——0,
K, ™ 2t

For Egs. 17 and lB,ﬂwsymbolSmemsﬂwstmduddwiaﬁmofpaﬁuﬂarvmiable.
Thus, Eq. 17 shows that each of the independent variables contributes to the dispersion of
D in a manner proportional to its own variance, Sz,mdprbpodioml‘toafactor

2

kapio) which is related to the sensitivity of changes in D to changes in the

independent variable (Benjamin and Comell, 1970).
Application of the method of fist order uncertainty analysis to the BOD-DO

syshmmqﬁmsesﬁma&sofmempmtﬁvﬂuesmdstmdﬁ'ddaiaﬁmuofDo,Lo

K¢, K, and t.

3.2  Application of First-Order Analysis to obtain Critical DO Sag:
Thelowestorc:iﬁcalpointofDOcmvcisimpmtaﬂtasitgimmegmmdeﬁsit

mdissonoxygen.Thecﬁﬁcalﬁmecmbeobtdnedbydiﬁ‘«mﬁmmcugm

equaﬁon(ll)wilhmpectmﬁmcmdphcingﬂwresulﬁmcxpwsdonequalw zero. The

point of the minimum oxygen content, in t msofﬁﬁ\c,tc,ismusobtai:wdas

15



! D,y ..D,
t‘_k.i(f-l)"'{’r (“L_,,) s LoJ (19)

It is clear from Ewu, (l9)ﬂutt,dependuq:onfmumdependentvmablamcly
k...k.l.o,andDo Talmrglhomﬂdenvauwdt.wmwapecttomhofﬂ:emdcpmdem
variables.

R AL R o v S

. B {1 Dy f)]

20)
& 1 ]
D D o

= EG )2l ! D.__2fD-)
R e e

1+ z;-(1'_]')

(22)

a, k‘L:[l—(f - 1)_LD_°_} | 23)

.
Themcanvaheofliobtaimdbyaubsﬁnningﬂnmvahmofh,k.h,mdm
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in Equ. (19). The equation for variance in & is obtaincd by substituting various senstivity
cocflicients in Equ. (5), as given below

The maximum DO deficit D, is obtained by substituting t = t. in Equ. (11) from

Equ. (19), the following expression is evolved

D, =k ue 25)

It is seen from Equ. (24) that D, hlhcﬁonoffomhdopmdcﬂvaﬁabhjnmdy
ks, ko, Lo, and t.. Taking the partial derivative of D, with respect to each of the
independent variables to get the respective senstive coefficient corresponding to each of the
independent vaniable.

D, _LA-kt) ..,

26
dd ka ()
O, kL .

17
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D,k
a, 14, e
(29)
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4.0

DATA SELECTION

The independent variables of Equ. 11 are subject to wide variations from stream to

stream or even from reach to reach of the same stream. Global or even regional mean

values and standard deviations would be difficult to estimate and would probably not

permit useful conclusions to be drawn. Four classes of streams, defined by the self -

pusification ratio, f = K /K4, were described. by Fair et al. (1968) as given in table 1.

TABLE 1 - Ranges of Data by Stream class

Stream-class f K, K4 v H

description (dimensionless) | (per day) | (per day) (meter/sec.) | (meters)
Shuggish 1.25-1.50 0.05-0.10 | 0.033-0.08 | 0.03-0.15 3.05-6.10
Low-velocity 1.50-2.00 0.10-1.00 | 0.050-0.67 | 0.03-0.15 0.92-3.05
Moderate-velocity | 2.00-3.00 1.00-5.00 | 0.500-2.50 | 0.15-0.61 0.61-1.52
Swift 3.00-5.00 1.00-10.0 | 0.200-3.33 | 0.61-1.83 0.61-3.05

In the present study following data given in table 2 is used in the uncertamty

analysis. This set of data is taken from Burges and Lettenmaier (1975).

Table 2: Parameters Used in Uncertainty Analysis

Parameters Mean Standard Deviation Coefficient of
iati
Initial BOD, L, 12.15 1.00 0.08
(ppm)
nitial DO Deficit, 1.00 0.50 0.50
Dy (ppm) _
Deoxygenation 0.331 0.10 0.32
Coeflicient kg
(per day)
Reoarcation 0.690 0.20 0.29
Coefficient k,
(per day)
Travel Time, t, —_ — 0.25
(days)

19



For a detailed study, the uncertainty analysis could be applicd to individual streams
as given in table 1. Furthermore, a wide range of parameter values and combinations could
be selected to permit study of the relative importance of the variables for variety of stream

20



5.0 Results and Discussions

5.1  Estimation of DO Profile

The mean DO profiles alongwith their standard deviation obtained by first-order
uncertainty analysis and Monte-Carlo simulations (assuming input to be Normally
distributed) are shown in Fig.1 and Fig. 2 respectively.. Comparisons between Monte
Carlo simulations and first order analysis are also shown in Table-3 and Fig. 3.

The obscrvations indicatc that the estimated mean value of dissolved oxygen
(DO) approeciably different for cither method of estimation. It is clear from Fig. 3 that
DO lewels are more or less same by both the methods up to the point of maximum
sag. Aficr this point,both the profiles depart from each other and the deviation between
them increascs with distance and saturates affer a cértain distance and then remain more
or less constant. Furthermore, it is observed that the DO levels given by first order
analysis arc always on the higher side in the post sag region of the stream:.

The standard deviation estimated by both methods indicates that the first order
approach is quite satisfactory as it has less variance than the Monte-Cardo simulations.
The standard deviation increases to a maximum and diminishes in magnitude with
distance along the stream. The point of maximum uncertainty is somewhat down
stream of the minimum dissolved oxygen level.

Now, assuming ail the parameters of DO model are to be lognormally distributed.
The resulting simulated profile is shown in Fig. 4. The comparison between the first
order and Monte-Carlo simulations (assuming all the input parameter to be log

normally distributed) is shown in fig. 5 and tablc 4.
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Table 3: Comparison of First-Order Uncertainty Estimates and Monte Cario Estimates of
DO (ppm) under Normal Distribution

Time of First Order Analysis Monte Carlo  Analysis Skewness
Travel

(days) Mean Std Deviation | Mean Std. Deviation

0.0 8.00 0.50 7.93 0.73 6.4
0.5 6.73 0.63 6.70 0.80 -2.99
1.0 6.07 0.79 6.09 0.90 -1.58
1.5 5.81 0.85 583 097 -1.32
20 579 0.89 5.81 1.00 -1.28
2.5 592 0.91 5.94 1.03 -1.39
30 6.14 0.93 6.10 1.07 -1.60
35 6.39 0.95 6.33 1.10 | -1.70
4.0 6.67 0.95 6.55 1.13 -1.88
45 6.93 0.94 6.77 1.14 -1.93
5.0 7.18 0.92 6.99 1.13 -2.24
5.5 7.42 0.88 722 1.13 -2.46
6.0 7.63 0.34 7.37 . 1.13 -2.67
6.5 7.81 0.79 7.51 1.13 -2.76
7.0 7.98 0.73 7.70 1.06 -3.37
7.5 8.12 0.68 1181 1.06 -3.31
8.0 8.25 0.62 7191 1.06 -3.52
85 836 0.57 8.04 1.03 -4 03
9.0 8.45 0.52 8.12 1.00 -4.21
95 8.53 0.47 823 : 0.96 -4.98
10.0 8.60 0.42 8.27 0.99 -4.86
10.5 8.66 0.38 8.34 0.95 -5.17
11.0 8.7 0.34 8.42 0.88 -5.80
11.5 8.75 0.30 8.47 0.86 -6.04
12.0 8.79 0.27 8.51 0.36 -6.33
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Table 4: Comparison of First-Order Uncertainty Estimates and Monte Carlo Estimates of
DO (ppm) under Log Normal Distribution

Time of First Order Analysis Monte Carlo Analysis Skewness
Travel (days)
Mean Std. Dev. | Mean Std. Dev.

0.0 8.00 0.50 8.02 0.50 -1.54
0.5 6.73 0.63 6.78 0.64 20.83 -
1.0 6.07 0.79 6.15 0.77 -0.56
1.5 5.81 0.85 591 0.82 -0.58
2.0 5.79 0.89 5.88 0.84 -0.56
25 592 0.91 6.00 0.84 0.48
3.0 . 614 0.93 6.18 0.86 053
35 6.39 0.95 6.39 0.89 -0.55
4.0 6.67 0.95 6.64 0.87 0.54
45 6.93 0.94 6.83 0.87 0.57
5.0 7.18 0.92 7.07 0.85 0.73
55 7.42 0.88 7.29 0.83 -0.86
6.0 7.63 0.84 .45 0.84 -1.07
6.5 7.81 0.79 7.63 0.78 430
7.0 7.98 0.73 77 0.79 -1.16
7.5 8.12 0.68 791 0.75 -3.31
8.0 8.25 0.62 800 0.72 -3.52
8.5 8.36 0.57 8.13 0.66 -4.03
9.0 8.45 0.52 8.20 0.68 -4.21
95 8.53 0.47 8.28 0.6 498
10.0 8.60 0.42 838 0.59 486
10.5 8.66 0.38 8.43 0.56 5.17
11.0 8.71 0.34 8.49 0.53 -5.80
115 8.75 0.30 8.56 0.48 -6.04
12.0 8.79 0.27 8.59 0.43 6.33
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It is very interesting to note that in the pre-sag region the first order profile over
wﬁmﬂuﬂlelmlofDOsag,whileinmepoﬂ-ugreg'onmeMm-Cuiomﬁlegim
higher e¢stimates for DO levels in the stream. Bocausc the pre-sag region is more
important fiomthe management of water quality point of view the over-cstimation of
DO sag is on the safer side. Therefore, first order analysis is more suitable than
the Monte-Carlo simulations. Furthermore, the first order profile has more uncertainty
in the pre-sag than the Monte-Carlo profile. But at the point of critical sag the difference
in the standard deviation determined by first order and Monte-Carlo simuiations is of the
order of 0.05 ppm which can be neglected for the sake of simplicity. This difference
increases after the sag point and then reduces along the stream and at a certain point they
become equal and then standard deviation determined by Monte-Carlo simulations over
takes the standard deviation given by first order. This difference first increases and
then remains constant after getting ssturated in the post sag region.

5.2  Estimation of Location of minimum DO and minimum DO
distribution.

The mean and standard deviation for minimum DO level and its location on the
river determined by first order analysis and Montc-Carlo simulations assuming all the
parameters are normally distributed have been given in table-5. The probability
distribution functions for minimum DO levels determined by first order analysis and
Monte-Carfo simulations using normally distributed input are shown in fig. 6 to fig.13
respectively along with their cumulative distribution functions. It is observed that both the
mean valuc and standard deviation of DO determined by first order analysis are on

higher side than the corresponding values obtained by Monte-Cardo simulations.
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Furthermore, it is noticed that the DO distribution determined by Monte-Carlo
simulations is skewed towards left indicting the occurrence of lower DO levels in the
stream at the critical location which is of immense importance for the management of
water quality in a stream. This particular phenomenon is eclipsed by the first-order
analysis.

Now, assuming all the input paramctersof water quality model to be lognormally
distributed, the minimum DO distribution is determined as shown in fig. 10 and fig 11.
The comparison of this distribution with that of first order analysis is given in table
6. It is again observed that the mean and standard deviation given by first order analysis
are on higher side than those of the Monte-Carlo simulation. Comparing table 5 and table
6, the influence of distribution type of input paramcters on the minimum DO is clearly
visible. The assumption of lognormal distribution for input parameters reduces the
uncertainty in DO level, while increascs its magnitude of mean value which is more
or less equal to that of the mean value given by first-order analysis. For further insight
into the DO distribution at the critical section of strcam, the probability density function
along with its cumulative dism'buﬁonisplottocimﬁg. 12 and fig. 13, assuming log-
normal distribution for output DO with mean and standard deviation obtained by first
order analysis. It is noticed that this distribution is more or less same as the DO
distribution obtained by Monte-Carlo simulation assuming all the input parameters to be
log normally distributed.

Now question arises which distribution is the best to predict the DO distribution at

the critical section. For answering this question two criteria hzve been used.
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Table 5: Critical DO in the river reach under Normal Distribution

Mecthod of Dissolved Oxygen (ppm) Travel Time (days)

Analysis Mean Standard Dev. Mean Standard Dev.
First-Order 5.770 1.062 1.785 0.138
Analysis
Monte-Carlo 5.663 1.001 1.864 0.589
Simulation

Table 6: Critical DO in the river reach under Log Normal Distribution

Method of | Dissolved Oxygen (ppm) Travel Time (days)

Analysis Mean Standard Dev. Mean Standard Dev.
First-Order 5.770 1.062 1.785 0.138
Analysis
Monte-Carlo 5.705 0.834 1.858 0.443
Simulation |
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5.3 Comparison of Statistics from K-S Test:

The analysis of the goodness of fit performance criteria waaconductedatﬂtecﬁtical.
location using K-S test as given below:
5.3.1 Assuming Normally Distributed Input:

Table 7: K-S Test for DO, assuming DO to be normally distributed

Method of Analysis Max. Diff. | Probability (2-Tail)
Monte Caro (Output is 0.068 0.00
normally distributed)
Monte Carlo (input is log- 0.100 0.00
normally distributed)
First-Order Analysis 0.016 0.964
First-Order Analysis (Output 0.048 0.018
is lognormally distributed)

5.3.2 Assuming Log Normally Distributed Input:

Table 8: K-S Test for DO, assuming DO to be lognormally distributed

Mecthod of Analysis Max, Diff. | Probability (2-Tail)
Monte Carlo (Output is 0.041 0.068
normally distributed)
Monte Carlo (input is log- 0.072 0.00
normally distributed)
First-Order Analysia 0.016 0.964
First-Order Analysis (Output 0.052 0.009
is lognormally distributed)

From table 7 and table 8, it could be concluded that the distribution of output DO
can not be assumed to be lognormally distributed. Because assuming it to be log-

normally distributed has increased the Max. Diff. from 0.068 to 0.101 when input is
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assumed to be normally distributed and from 0.041 to 0.072 when input is assumed to
be lognormally distributed. Similar trend is also observed with the first order analysis.
The influcnce of type of input variable distributions could be scen by comparing Max
Diff. statistics for Montc-Carlo simulations given in table 7 and tablc 8. The assumption
of lognormal distribution for input varisbles improves the Max diff, statistics from
0.068 to 0.041. This indicates that it is better to assume log normal distribution for the
input parameters instead of normal distribution.
5.4  Prediction Performance Evaluation Criteria:

The analysis of the prediction ability criteria was also conducted at the critical Jocation
to sec which distribution is better for prediction purposes.

Table - 9: Test for the predictability criteria

True Distr.:Monte Carlo simulatin True Distr.:Monte Carlo simulatin
with normally distributed input with log- normally distributed input
Criteria | Assumed Distr.: Normal distribution | Assumed Distr.: Normal distribution

with first-order parameters with first-order parameters
BIAS 0.293 0.109
MAE 0.382 0.436
RMSE 0.471 0.319

It is clear from table 9 that the assumption of lognormial distribution for input
parameters improves the Bias and RMSE confirming the above conclusion that input
parameters should be assumed to be lognormally distributed instead of normaily

5.5  Uncertainty in the Location of Point of Minimum DO on the Stream:
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The location of the critical DO in a stream is also not certain at a fixed point. It
varies with the variation in the imput variables. The uncertainty analysis of fthe
location of critical DO is summarized in the following table (Table-10).

Table 10: Variation in critical ime obtained using different methods

Mecthod of Travel Time (days)
Analysis Mean Vahie Standard Dev.
First-Order Analysis 1.785 0.138
Monte Carlo with
normally distributed 1.864 0.589
input
Monte Carlo with log-
normally disttributed 1.858 0.443
input

Fromtablzlo,itis_mnthatﬂlcﬁmtotderamlysis under estimates both the
mean value and standard deviation of the critical travel time. Whereas, the mean travel
time estimated by the Monte-Carlo Simulations is more or less same irrespective of
the types of input variable distributions. But, they too differ with respect to the
uncertainty associated with the travel time considerably. As the cartier discussion with
respect to the minimum DO favors the lognormal distribution for the input variables, it is
justified that the standard deviation of 0.443 in travel time given by the Monte Carlo

simulations, assuming the input 10 be lognormally distributed is reasonably accoptable.
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6.0 Conclusions

6.1 Critical DO & its Location

1. Neither normal distribution nor lognormal distribution is found justified to represent

the output DO distribution. However, if one has to make a choice between them,

normal distribution is found to be preferred.

2. Lognommal distribution is found to be preferred distributions for the input

vatiables.

3. Fmesﬁnmﬁonof&avelﬁme,Mmm-CmiosimMaﬁonwimmmalhmmvmiablu

is found to be a preferred method.

4. The mean value of minimum DO at the critical location is found 1o be more or

less samc irrespective of the method used. But Ievel of uncertainty associated with the

minimum DO is found to be considerably different. The Monte-Carlo simulations with

log normal distribution input is found to give the least uncertainty in the level of
minimum DO levels.

6.2 DO Proflle Along the Stream

1. The magnitude of DO level determined by first order analysis and Monte Caro

simnﬂaﬁommingnormallydisu-ibutedinpmisahnost equal in the pre-sag region. The

Monte-Carlo simulaﬁonusinglomomallydistn‘butedhpmﬁves higherbOlcvclsinthc

pre-sag region. Therefore, the first-order analysis being on the safer side for water
quality management activities, is found to be more Jjustified.

2. Frommcmcmahnypohtofvicw,ﬁmtordcrmalyshhavhgbssmndnddwhﬁon
than the Monte Carlo simulation, is found to be more suitable to predict the uncertainty in

the DO profile.
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