

|     | SCHEDULE A                                                |                                                                 |  |  |  |  |
|-----|-----------------------------------------------------------|-----------------------------------------------------------------|--|--|--|--|
|     | ASSESSMENT OF RIVER BA                                    | SINS (RBs) IN SOUTH ASIA                                        |  |  |  |  |
| Sr. | Details                                                   | Response                                                        |  |  |  |  |
| No. |                                                           |                                                                 |  |  |  |  |
| 1   | Physical Features - General Information                   |                                                                 |  |  |  |  |
| 1.1 | Name of River basin (also indicate regional               | Kala Oya                                                        |  |  |  |  |
|     | names used in different countries, states along its       |                                                                 |  |  |  |  |
|     | course);                                                  |                                                                 |  |  |  |  |
| 1.2 | Relief Map and Index Map of RB with Country/              | Map 1- relief map                                               |  |  |  |  |
|     | State/ Province boundary marked to be attached.           | Map 2 - index map                                               |  |  |  |  |
| 1.3 | Geographical location of the place of origin              | Map 3 - river basin map                                         |  |  |  |  |
|     | (Country/District. Please indicate on relief and          |                                                                 |  |  |  |  |
|     | Index Map)                                                |                                                                 |  |  |  |  |
| 1.4 | Area (in Sq. Kms.),                                       | 2805 km <sup>2</sup>                                            |  |  |  |  |
| 1.5 | Population (in Millions);                                 | 0.4 Million                                                     |  |  |  |  |
|     | Name of population centers/ Cites (duely                  |                                                                 |  |  |  |  |
|     | marked on the map: refer 1.2) having Population -         |                                                                 |  |  |  |  |
|     |                                                           |                                                                 |  |  |  |  |
|     | (a) More than 0.5 Million - 1 Million                     |                                                                 |  |  |  |  |
|     | (b) More than 1 Million – 10 Million                      |                                                                 |  |  |  |  |
|     | (c) More than 10 Million                                  |                                                                 |  |  |  |  |
| 1.6 | Approximate areas of upper regime, middle                 | Up stream (IZ) -24%                                             |  |  |  |  |
|     | regime and lower regime;                                  | Down stream (DZ) - 76%                                          |  |  |  |  |
| 4 7 | Country and States (Dravines) in which the basis          | Control Motolo (EQE $km^2$ 199()                                |  |  |  |  |
| 1./ | Lise (indicate % and states (Province) in which the basin | Certifial - iviatale (505 km <sup>2</sup> - 18%)                |  |  |  |  |
|     | lies (indicate % area covered);                           | North central - Anuradhapura (1481 km² - 52%)                   |  |  |  |  |
|     |                                                           | North Western -K'gala(412 km <sup>2</sup> - 14%), Puttalam (449 |  |  |  |  |

|     |                                                                                                                                                                      | km²-16%)                                                                         |                                                                                              |                                              |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------|
| 2   | Hydrological and Land use Features:                                                                                                                                  |                                                                                  |                                                                                              |                                              |
| 2.1 | Average annual rainfall (in mm);<br>(Support with distribution pattern on Relief Map of<br>RB {at 1.2} - indicating regions receiving high,<br>medium or low rains); | Up stream (IZ -24%<br>76%) 1200 mm<br>Average - 1450 mr                          | %) - 1700 mm Down :<br>n                                                                     | stream (DZ -                                 |
| 2.2 | Maximum-minimum temperatures in Degree<br>Centigrade                                                                                                                 | Min 23°c<br>Max 37°c                                                             | Avg                                                                                          | 33⁰c                                         |
| 2.3 | Average annual yield (discharge) of water in Cubic<br>Meter and the average yield for last past five years                                                           | AA yield - 3569 mc                                                               | m                                                                                            |                                              |
| 2.4 | Major tributaries                                                                                                                                                    | Araula Oya, Palwe<br>Oya, Hawanella oy<br>Maninda Oya, Kala<br>Ela.Pan Ela. Pomp | hera Ela, Dambulu O<br>⁄a, Moragolla Oya, Ja<br>agal Oya, Moderagam<br>parippu aru, Lunu oya | ya, Mirisgoni<br>yaganga,<br>ı Aru, Denigala |
| 2.5 | Percentage shares of major water uses & Surface<br>and groundwater abstraction in percentages-                                                                       | domestic, industria                                                              | I and commercial use                                                                         | es are                                       |
|     | Convert intoTable                                                                                                                                                    | Sector                                                                           | Annual Water Use<br>(mcm)                                                                    | Percentage                                   |
|     |                                                                                                                                                                      | Irrigation                                                                       | 1158.5                                                                                       | 98.4%                                        |
|     |                                                                                                                                                                      | Municipal                                                                        | 4.0                                                                                          | 0.3%                                         |
|     |                                                                                                                                                                      | Rural                                                                            | 14.7                                                                                         | 1.3%                                         |

|     | (a.) Agriculture, |                            |              | Surface - Irrigated Agriculture constitutes the         |                       |                                    |  |  |  |
|-----|-------------------|----------------------------|--------------|---------------------------------------------------------|-----------------------|------------------------------------|--|--|--|
|     |                   |                            |              | pred                                                    | ominant use o         | f surface water (> 99%)            |  |  |  |
|     | Г                 | 2006 vala (Apr. Sen.)      |              |                                                         |                       | 7                                  |  |  |  |
|     |                   | Source                     | Diversion vo | lume                                                    | Irrigation            |                                    |  |  |  |
|     |                   |                            | (mcm)        |                                                         | water use<br>(mcm)    |                                    |  |  |  |
|     |                   | Kala Wewa to Nachchaduwa   |              | 17.8                                                    | 38.8                  |                                    |  |  |  |
|     |                   | Kala Wewa to Tissa Wewa    |              | 11.1                                                    | 2.8                   |                                    |  |  |  |
|     |                   | Nachchaduwa to Nuwara wewa |              | 0.5                                                     | 14.5                  |                                    |  |  |  |
|     |                   | Total                      |              | 35.4                                                    | 56.1                  |                                    |  |  |  |
|     | (b.) Industries   | 3                          |              | -                                                       |                       |                                    |  |  |  |
|     | (c). Domestic,    |                            |              | Groundwater (Dug wells, tube wells and public wells) is |                       |                                    |  |  |  |
|     |                   |                            |              | the main source of drinking water (70%)                 |                       |                                    |  |  |  |
|     |                   |                            |              | pipe                                                    | water - 3%            |                                    |  |  |  |
|     |                   |                            |              | other - rest                                            |                       |                                    |  |  |  |
|     | (d). urban,       |                            |              | -                                                       |                       |                                    |  |  |  |
|     | e). environme     | ntal flows.                |              | Kala Oya Basin has released one extra bulk water        |                       |                                    |  |  |  |
|     |                   |                            |              | issue                                                   | e (extra water i      | rotation) for every 12 irrigation  |  |  |  |
|     |                   |                            |              | issue                                                   | es (rotations) to     | o supplement the environment flows |  |  |  |
|     |                   |                            |              | Mea                                                     | <u>n annual disch</u> | arge to sea - 855 mcm              |  |  |  |
| 2.6 | Major cropping    | g pattern                  |              |                                                         |                       |                                    |  |  |  |

|               | Scheme       | Command | Cropping  | Cultivate<br>(ha) | ed Area | Duty (mm) | Water<br>use* | User   |
|---------------|--------------|---------|-----------|-------------------|---------|-----------|---------------|--------|
|               | Scheme       | (ha)    | Intensity | Yala              | Maha    |           | (mcm)         |        |
|               | Kalawewa     | 22778   | 1.45      | 10507             | 24904   | 1752      | 56            |        |
|               | Kandalama    | 4900    | 1.39      | 2541              | 4274    | 1234      | 84            | 1      |
|               | Dambuluoya   | 2160    | 1.75      | 1388              | 2392    | 1122      | 42            | MASL   |
|               | Devahuwa     | 1210    | 1.26      | 517               | 1008    | 1871      | 19            | )      |
|               | Rajangana    | 7125    | 1.83      | 6679              | 6346    | 2051      | 267           |        |
|               | Usgala       | 850     | 1.74      | 671               | 807     | 1267      | 19            | )      |
|               | Neelabemma   | 688     | 1.11      | 368               | 405     | 1500      | 12            | 2 ID   |
|               | Medium Tanks | 2062    | 1.5       | 2062              | 1031    | 1062      | 22            | 2      |
| er irrigation | Small tanks  | 12000   | 1         |                   | 12000   | 1100      | 132           | 2      |
|               | Total        | 53773   | 1.45      | 24733             | 53167   | 1562      | 1158          | ASD/ID |

| 2.8 | Cultivable area not under irrigation | ** | _2006- yala (Apr | .Sep.)         |               |            |
|-----|--------------------------------------|----|------------------|----------------|---------------|------------|
|     |                                      |    | Irrigation       | Total          | Cultivable ex | tend under |
|     |                                      |    | scheme           | cultivable lan | d irrigation  | (Kĩ)n      |
|     |                                      |    |                  | extend (km)    | Crop          | Extend     |
|     |                                      |    | Neelabamma       | 6.9            | Paddy         | 1.25       |
|     |                                      |    |                  |                | OFC           | 5.65       |
|     |                                      |    | Rajangana        | 84             | Paddy         | 62.1       |
|     |                                      |    |                  |                | OFC           | 21.9       |
|     |                                      |    | Kala Wewa L/B    | 66.6           | Paddy         | 21.31      |
|     |                                      |    |                  |                | OFC           | 3197       |
|     |                                      |    | Kala Wewa Y/E    | 47.2           | Paddy         | 28.32      |
|     |                                      |    |                  |                | OFC           | 9.44       |
|     |                                      |    | Kala Wewa R/E    | 140.3          | Paddy         | 44.9       |
|     |                                      |    |                  |                | OFC           | 67.34      |
|     |                                      |    | Dambulu Oya      | 22.3           | Paddy         | 13.38      |
|     |                                      |    |                  |                | OFC           | 8.92       |
|     |                                      |    | Kandalama        | 49             | Paddy         | 29.4       |
|     |                                      |    |                  |                | OFC           | 19.6       |
|     |                                      |    | Total            | 416.3          |               | 365.48     |
|     |                                      |    |                  |                |               |            |

| 2.9 | State other Water Uses- eg. Navigation, power, recreation etc. | Fish industry in tanks, Recreation for eco-tourism        |
|-----|----------------------------------------------------------------|-----------------------------------------------------------|
| 3   | Ecosystem Features                                             |                                                           |
| 3.1 | Agro-climatic zones                                            | Map 4 - Agro ecalogycal map                               |
|     |                                                                | Intermediate zone, Dry zone,                              |
| 3.2 | Major sub ecosystems (zoogeographical zones)                   | Map 4 - Agro ecalogycal map                               |
|     |                                                                | IM1b, IM3b,                                               |
|     |                                                                | IL3,                                                      |
|     |                                                                | DL1b, DL1f, DL3                                           |
| 3.3 | Major soil types                                               | Map 5 - Soil map of Sri Lanka                             |
|     |                                                                | Red yellow podsolic with semi prominant A horizon, Red    |
|     |                                                                | yellow latasolic, Reddish brown latasolic, Reddish brown  |
|     |                                                                | earth,low humic glay soil, lithosol, Non calcic brown,    |
|     |                                                                | Regosol,                                                  |
| 3.4 | National parks/sanctuaries, lakes, wetlands, etc.              | Kahala- Pallekale Sanctuary (18116 ha), (Part), Villpattu |
|     |                                                                | National Park (45411 ha) (part), Thabbowa Sanctuary       |
|     |                                                                | (2193 ha) (total extent), Minneriya- Giritale Nature      |
|     |                                                                | reserve (1467 ha) (small part), Sigiriya Sanctuary (1310  |
|     |                                                                | ha) (small part) Major reservoirs Devahuva,               |
|     |                                                                | Dambuluoya, Kandalama, Kala Wewa,                         |
|     |                                                                | Mahailupalama, Rajangana, Katiyawa, Angamuva and          |
|     |                                                                | 600 small tanks.                                          |
|     |                                                                | Flood plain wetlands (villu). Coastal resources as        |
|     |                                                                | Mangroves, salt marshes Sea grass beds, Sand dunes,       |
|     |                                                                | Lagoon system, Bar reef Marine sanctuary(306 km2),        |
|     |                                                                | etc. Twelve                                               |

|     |                                                       | commodities mineral resources |
|-----|-------------------------------------------------------|-------------------------------|
|     |                                                       |                               |
|     |                                                       |                               |
|     |                                                       |                               |
|     |                                                       |                               |
|     |                                                       |                               |
| 3.5 | Brief information about the delta region of the basin | -                             |
|     | (area, location, major urban centers in the delta,    |                               |
|     | etc.)                                                 |                               |
| 4   | Water Quality                                         |                               |

| 4.1     |                                                       |                                                               |                                                                                                                             |                                                                                                           |                                       | Little or no consideration is given for quality of irrigation |                                                                                  |                                                 |                                         |                                                      |                                                                          |      |
|---------|-------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------|------|
|         | Prevailing water quality standards (e.g. Class I, II, |                                                               |                                                                                                                             |                                                                                                           |                                       | water                                                         |                                                                                  |                                                 |                                         |                                                      |                                                                          |      |
|         | III.etc, indicating permitted uses)                   |                                                               |                                                                                                                             |                                                                                                           |                                       | More than 76 million people, mainly children will die from    |                                                                                  |                                                 |                                         |                                                      |                                                                          |      |
|         |                                                       | 01                                                            | ,                                                                                                                           |                                                                                                           |                                       | wa                                                            | ter related                                                                      | disease                                         | es by 202                               | 20. accord                                           | lina to WHC                                                              |      |
| Phiei   | co Chomic                                             | al charactors                                                 |                                                                                                                             |                                                                                                           |                                       | (20                                                           | 000) there                                                                       | are alrea                                       | adv 4000                                | ) million ca                                         | ses of diar                                                              | rhea |
| Paran   | neter                                                 | Kala Wewa                                                     | Raianganava                                                                                                                 |                                                                                                           |                                       |                                                               | ch vear du                                                                       | vina as r                                       | nany ae                                 | 5 million n                                          | oonlo                                                                    | nica |
| pH      |                                                       | 7.76                                                          | 8.01                                                                                                                        |                                                                                                           |                                       |                                                               | ch year, u                                                                       | ying as i                                       | nany as                                 | 5 minor p                                            | eopie.                                                                   |      |
| ΕC(μ°   | °S)                                                   | 195                                                           | 345                                                                                                                         |                                                                                                           |                                       |                                                               |                                                                                  |                                                 |                                         |                                                      |                                                                          |      |
| Alkalii | nity (ppm)                                            | 65.13                                                         | 137.02                                                                                                                      |                                                                                                           |                                       |                                                               |                                                                                  |                                                 |                                         |                                                      |                                                                          |      |
| Nitrite | e (ppb)                                               | 53                                                            | 24                                                                                                                          |                                                                                                           |                                       |                                                               |                                                                                  |                                                 |                                         |                                                      |                                                                          |      |
| Nitrate | e (ppb)                                               | 12                                                            | 13                                                                                                                          |                                                                                                           |                                       |                                                               |                                                                                  |                                                 |                                         |                                                      |                                                                          |      |
| Chlori  | ide (ppm)                                             | 20                                                            | 30                                                                                                                          |                                                                                                           |                                       |                                                               |                                                                                  |                                                 |                                         |                                                      |                                                                          |      |
| Calsiu  | ım                                                    | 5.2                                                           | 6.6                                                                                                                         |                                                                                                           |                                       |                                                               |                                                                                  |                                                 |                                         |                                                      |                                                                          |      |
| Magn    | esium                                                 | 9.5                                                           | 11.2                                                                                                                        |                                                                                                           |                                       |                                                               |                                                                                  |                                                 |                                         |                                                      |                                                                          |      |
|         |                                                       |                                                               |                                                                                                                             |                                                                                                           |                                       |                                                               |                                                                                  |                                                 |                                         |                                                      |                                                                          |      |
|         |                                                       |                                                               |                                                                                                                             |                                                                                                           |                                       |                                                               |                                                                                  |                                                 |                                         |                                                      |                                                                          |      |
| 1       |                                                       |                                                               |                                                                                                                             |                                                                                                           |                                       |                                                               |                                                                                  |                                                 |                                         |                                                      |                                                                          |      |
|         |                                                       |                                                               |                                                                                                                             |                                                                                                           | 1                                     |                                                               |                                                                                  |                                                 | 1                                       | 1                                                    |                                                                          |      |
|         |                                                       |                                                               | Reservoir                                                                                                                   | pH                                                                                                        | EC µ                                  | S                                                             | Salinity                                                                         | SAR H                                           | SAR L                                   | Cl- mg/l                                             | SO4 <sup>-</sup>                                                         |      |
|         |                                                       |                                                               | Reservoir                                                                                                                   | <b>pH</b>                                                                                                 | ЕС µ<br>78-                           | S                                                             | Salinity                                                                         | <b>SAR</b> н                                    | <b>SAR</b> L                            | <b>Cl- mg/l</b>                                      | <b>SO4<sup>-</sup></b><br>mg/l                                           |      |
|         |                                                       |                                                               | Reservoir<br>Kandalama<br>Kalawewa                                                                                          | <b>pH</b><br>6.8-8.80<br>7 10-8 73                                                                        | ЕС µ<br>78-<br>82-                    | S<br>-340<br>-400                                             | <b>Salinity</b><br>260<br>235                                                    | <b>SAR н</b><br>0.518<br>1 011                  | <b>SAR L</b><br>0.396<br>2.258          | CI- mg/l                                             | <b>SO4<sup>-</sup></b><br><b>mg/l</b><br>0.12-9.63<br>0.48-4.80          |      |
|         |                                                       |                                                               | Reservoir<br>Kandalama<br>Kalawewa<br>Rajangana                                                                             | <b>pH</b><br>6.8-8.80<br>7.10-8.73<br>7.47-8.57                                                           | ЕС µ<br>78-<br>82-<br>278-            | S<br>-340<br>-400<br>-650                                     | Salinity<br>260<br>235<br>358                                                    | <b>SAR</b> н<br>0.518<br>1.011<br>0.710         | SAR L<br>0.396<br>2.258<br>1.065        | Cl- mg/l<br>1.7-7.2<br>13.47-51<br>34                | <b>SO4</b> <sup>-</sup><br><b>mg/l</b><br>0.12-9.63<br>0.48-4.80<br>8.77 |      |
|         |                                                       |                                                               | Reservoir<br>Kandalama<br>Kalawewa<br>Rajangana<br>H – High water                                                           | <b>pH</b><br>6.8-8.80<br>7.10-8.73<br>7.47-8.57<br>level                                                  | ЕС µ3<br>78-<br>82-<br>278-           | S<br>-340<br>-400<br>-650<br>L -                              | Salinity<br>260<br>235<br>358<br>Low water 1                                     | <b>SAR н</b> 0.518 1.011 0.710 evel             | <b>SAR L</b><br>0.396<br>2.258<br>1.065 | CI- mg/l 1.7-7.2 13.47-51 34                         | <b>SO4<sup>-</sup></b><br><b>mg/l</b><br>0.12-9.63<br>0.48-4.80<br>8.77  |      |
|         |                                                       |                                                               | Reservoir<br>Kandalama<br>Kalawewa<br>Rajangana<br>H – High water                                                           | <b>pH</b><br>6.8-8.80<br>7.10-8.73<br>7.47-8.57<br>level                                                  | ЕС µ3<br>78-<br>82-<br>278-           | S<br>-340<br>-400<br>-650<br>L -                              | Salinity<br>260<br>235<br>358<br>Low water 1                                     | <b>SAR н</b> 0.518 1.011 0.710 level            | SAR L<br>0.396<br>2.258<br>1.065        | Cl- mg/l 1.7-7.2 13.47-51 34                         | <b>SO4</b> <sup>-</sup><br><b>mg/l</b><br>0.12-9.63<br>0.48-4.80<br>8.77 |      |
|         |                                                       |                                                               | Reservoir<br>Kandalama<br>Kalawewa<br>Rajangana<br>H – High water                                                           | <b>pH</b><br>6.8-8.80<br>7.10-8.73<br>7.47-8.57<br>level                                                  | ЕС µ3<br>78-<br>82-<br>278-           | S<br>-340<br>-400<br>-650<br>L –                              | Salinity<br>260<br>235<br>358<br>Low water 1                                     | <b>SAR н</b><br>0.518<br>1.011<br>0.710<br>evel | SAR L<br>0.396<br>2.258<br>1.065        | Cl- mg/l<br>1.7-7.2<br>13.47-51<br>34                | <b>SO4</b> <sup>-</sup><br><b>mg/l</b><br>0.12-9.63<br>0.48-4.80<br>8.77 |      |
| 4.2     | Stratcha                                              | s (along the F                                                | Reservoir<br>Kandalama<br>Kalawewa<br>Rajangana<br>H – High water                                                           | <b>pH</b><br>6.8-8.80<br>7.10-8.73<br>7.47-8.57<br>level                                                  | ЕС µ3<br>78-<br>82-<br>278-           | S<br>-340<br>-400<br>-650<br>L -                              | Salinity<br>260<br>235<br>358<br>Low water 1                                     | SAR н<br>0.518<br>1.011<br>0.710<br>evel        | SAR L<br>0.396<br>2.258<br>1.065        | Cl- mg/l 1.7-7.2 13.47-51 34                         | <b>SO4</b> <sup>-</sup><br><b>mg/l</b><br>0.12-9.63<br>0.48-4.80<br>8.77 |      |
| 4.2     | Stretche                                              | s (along the F                                                | Reservoir<br>Kandalama<br>Kalawewa<br>Rajangana<br>H – High water                                                           | pH<br>6.8-8.80<br>7.10-8.73<br>7.47-8.57<br>level                                                         | ЕС µ3<br>78-<br>82-<br>278-<br>uality | S<br>-340<br>-400<br>-650<br>L -                              | Salinity<br>260<br>235<br>358<br>Low water I                                     | SAR н<br>0.518<br>1.011<br>0.710<br>level       | SAR L<br>0.396<br>2.258<br>1.065        | Cl- mg/l<br>1.7-7.2<br>13.47-51<br>34                | <b>SO4</b> <sup>-</sup><br><b>mg/l</b><br>0.12-9.63<br>0.48-4.80<br>8.77 |      |
| 4.2     | Stretche:<br>classes i                                | s (along the F<br>ndicated (ma                                | Reservoir<br>Kandalama<br>Kalawewa<br>Rajangana<br>H – High water<br>River) in Kms. w                                       | pH<br>6.8-8.80<br>7.10-8.73<br>7.47-8.57<br>level<br><i>v</i> ith water q<br>n map)                       | ЕС µ3<br>78-<br>278-<br>uality        | S<br>-340<br>-400<br>-650<br>L                                | Salinity<br>260<br>235<br>358<br>Low water I                                     | SAR н<br>0.518<br>1.011<br>0.710<br>evel        | SAR L<br>0.396<br>2.258<br>1.065        | CI- mg/l<br>1.7-7.2<br>13.47-51<br>34                | SO4 <sup>-</sup><br>mg/l<br>0.12-9.63<br>0.48-4.80<br>8.77               |      |
| 4.2     | Stretches<br>classes i                                | s (along the F<br>ndicated (ma                                | Reservoir<br>Kandalama<br>Kalawewa<br>Rajangana<br>H – High water<br>River) in Kms. w<br>y be marked or                     | pH<br>6.8-8.80<br>7.10-8.73<br>7.47-8.57<br>level<br>/ith water q<br>n map)                               | ЕС µ3<br>78-<br>82-<br>278-<br>uality | S<br>-340<br>-400<br>-650<br>L -<br>**                        | Salinity<br>260<br>235<br>358<br>Low water 1                                     | SAR н<br>0.518<br>1.011<br>0.710<br>level       | SAR L<br>0.396<br>2.258<br>1.065        | CI- mg/l<br>1.7-7.2<br>13.47-51<br>34                | SO4 <sup>-</sup><br>mg/l<br>0.12-9.63<br>0.48-4.80<br>8.77               |      |
| 4.2     | Stretches<br>classes i<br>Sources                     | s (along the F<br>ndicated (may<br>of Pollution, v            | Reservoir<br>Kandalama<br>Kalawewa<br>Rajangana<br>H – High water<br>River) in Kms. w<br>y be marked or                     | pH           6.8-8.80           7.10-8.73           7.47-8.57           level                             | EC µ<br>78-<br>82-<br>278-<br>uality  | S<br>-340<br>-400<br>-650<br>L<br>**                          | Salinity<br>260<br>235<br>358<br>Low water I                                     | SAR н<br>0.518<br>1.011<br>0.710<br>level       | SAR L<br>0.396<br>2.258<br>1.065        | CI- mg/l<br>1.7-7.2<br>13.47-51<br>34                | SO4 <sup>-</sup><br>mg/l<br>0.12-9.63<br>0.48-4.80<br>8.77               |      |
| 4.2     | Stretches<br>classes i<br>Sources<br>and/or se        | s (along the F<br>ndicated (ma<br>of Pollution, v<br>everity. | Reservoir<br>Kandalama<br>Kalawewa<br>Rajangana<br>H – High water<br>River) in Kms. w<br>y be marked or<br>with data indica | <b>pH</b><br>6.8-8.80<br>7.10-8.73<br>7.47-8.57<br>level<br><i>v</i> ith water q<br>n map)<br>ting quantu | ЕС µ<br>78-<br>82-<br>278-<br>uality  | S<br>-340<br>-400<br>-650<br>L -<br>**<br>Agr<br>Unt          | Salinity<br>260<br>235<br>358<br>Low water I<br>co-chemica<br>reated we          | SAR н<br>0.518<br>1.011<br>0.710<br>level       | SAR L<br>0.396<br>2.258<br>1.065        | CI- mg/l<br>1.7-7.2<br>13.47-51<br>34<br>ge (industr | SO4 <sup>-</sup><br>mg/l<br>0.12-9.63<br>0.48-4.80<br>8.77               | tic, |
| 4.2     | Stretches<br>classes i<br>Sources<br>and/or se        | s (along the F<br>ndicated (ma<br>of Pollution, v<br>everity. | Reservoir<br>Kandalama<br>Kalawewa<br>Rajangana<br>H – High water<br>River) in Kms. w<br>y be marked or<br>with data indica | pH<br>6.8-8.80<br>7.10-8.73<br>7.47-8.57<br>level<br>//ith water q<br>n map)<br>ting quantu               | ЕС µ<br>78-<br>82-<br>278-<br>uality  | S<br>-340<br>-400<br>-650<br>L –<br>**<br>Agr<br>Unt          | Salinity<br>260<br>235<br>358<br>Low water I<br>ro-chemica<br>reated west<br>an) | SAR н<br>0.518<br>1.011<br>0.710<br>level       | SAR L<br>0.396<br>2.258<br>1.065        | CI- mg/l<br>1.7-7.2<br>13.47-51<br>34<br>ge (industr | SO4 <sup>-</sup><br>mg/l<br>0.12-9.63<br>0.48-4.80<br>8.77               | tic, |

| 4.4 | Prevailing abatement techniques e.g: ETP, STP, legislation,etc. | **                                                               |
|-----|-----------------------------------------------------------------|------------------------------------------------------------------|
| 5   | Current status of the resource development &                    |                                                                  |
|     | potential for development                                       |                                                                  |
| 5.1 | Water availability:                                             | 8676 m3 / person / Yr                                            |
|     | a. Per capita water availability (in lpcd )                     |                                                                  |
|     | b. Per hectare water availability (in Cubic meters              | 56948 m <sup>3</sup> / ha / Yr                                   |
|     | for cultivable command area):                                   |                                                                  |
|     | c. Availability of environmental flows (Current                 | Kala Oya Basin has released one extra bulk water issue           |
|     | reserve, if any):                                               | (extra water rotation) for every 12 irrigation issues            |
|     |                                                                 | (rotations) to supplement the environment flows                  |
|     |                                                                 | Mean annual discharge to sea - 855 mcm                           |
|     | d. Availability of ground water/ Average annual                 | 3.3 km <sup>2</sup> cultivate using groundwater (Bombay onion,   |
|     | ground water abstraction/recharge.                              | papaya, banana). Micro irrigation used in 0.24 km <sup>2</sup> . |
|     |                                                                 | annual recharge of the Vanathavillu limestone aquifer            |
|     |                                                                 | located adjacent to the lower part of the KalaOva basin is       |
|     |                                                                 | 7.3 mcm.                                                         |

| 5.2 |                                |             |                | **        |        |          |                      |           |           |                   |       |
|-----|--------------------------------|-------------|----------------|-----------|--------|----------|----------------------|-----------|-----------|-------------------|-------|
|     | Structures:                    |             |                | Reservoir |        |          | Active Storage (mcm) |           |           | Command area (ha) |       |
|     | a. Major dams/barrages (with   | utilization | <b>W</b> 11    |           |        |          |                      |           | 22.7      |                   | 40.00 |
|     | categories):                   |             | Kandalar       | na        |        |          |                      |           | 33.7      | 4900              |       |
|     |                                |             | Dambulu        | oya       |        |          |                      |           | 9.0       |                   | 2100  |
|     |                                |             | Kalawew        | a         |        |          |                      |           | 123       |                   | 23800 |
|     |                                |             | Rajangan       | a         |        |          |                      |           | 94        |                   | 6700  |
|     |                                |             | Devahuw        | 'a        |        |          |                      |           | 12        |                   | 946   |
|     |                                |             | Usgala si      | yamba     | langar | nuwa     |                      |           | 27.1      |                   | 800   |
|     |                                |             | Angamuy        | va        | -      |          |                      |           | 15.8      |                   | 998   |
|     |                                |             | Kattiyaw       | a         |        |          | 3.4                  |           | 3.4       | 20                |       |
|     |                                | Name        | Year of        | F         | Full   | Catchme  | ent                  | Reservoir | Maximum   | Volume            | CA:RA |
|     |                                |             | construction   | n/ Su     | ipply  | Area     |                      | Area (ha) | Depth (m) | (mcm)             |       |
|     |                                |             | restoration    | Le        | evel   | $(km^2)$ | )                    |           |           |                   |       |
|     |                                |             | ('n'- new      |           | (m)    |          |                      |           |           |                   |       |
|     |                                | Kandalama   | 1957n          | )         | 76.2   | 1        | 02                   | 688       | 87        | 34                | 15    |
|     |                                | Kalawewa    | 1997n<br>1887a | 1         | 29.2   | 5        | 98                   | 2590      | 9.1       | 123               | 23    |
|     |                                | Rajangana   | 1951a          |           | 68.3   | 4        | 43                   | 1619      | 10.7      | 100               | 27    |
|     |                                |             |                |           |        |          |                      |           |           |                   |       |
| Ī   | h Dropopod domo:               |             |                |           |        |          |                      |           |           |                   |       |
|     | b. Proposed dams:              |             |                |           |        |          |                      | -         |           |                   |       |
|     | c. Live storage of major dams: |             |                | see       | 5.2    |          |                      |           |           |                   |       |
|     | d. Live storage through propos | sed dams:   |                |           |        |          |                      | -         |           |                   |       |

|     | e. Inter basin transfer systems:                | From Mahaweli to KBO diversion(annually - 510 mcm),             |
|-----|-------------------------------------------------|-----------------------------------------------------------------|
|     |                                                 | from KOB to Malwatu Oya basin (annually - 61 mcm)               |
|     |                                                 |                                                                 |
|     | f. Any Other:                                   | -                                                               |
| 5.3 | Command area of major dams                      | see 5.2                                                         |
| 5.4 | Agencies functioning in the basins:             | Mahaweli Authority- System H, Dept. of Agriculture, Provincial  |
|     | a. Public agencies/ CSOs which construct/       | Dept.of Agriculture, Irrigation Department, National Water      |
|     | implement the infrastructures projects:         | Supply and Drainage Board, Water Resources Board                |
|     | b. Private agencies/ CSOs involved in           |                                                                 |
|     | infrastructure development                      |                                                                 |
| 6   | Existence of National/State/Provincial Laws     | National Water Policy - Comprehensive water resources           |
|     | or Notifications relating to water-             | management requires a framework of coherent policies,           |
|     | Management / use/development/opportunity        | consistent laws and regulations, collaboration among water-     |
|     | for private sector participation or for         | sector institutions and all stakeholders and carefully targeted |
|     | privatization of water resources                | well informed government action. The overall policy objective   |
|     |                                                 | as stated in the draft National Water Resource Policy of 2000   |
|     |                                                 | are to: "Encourage Integrated Water Resource Management         |
|     |                                                 | to ensure that national water resources are conserved and       |
|     |                                                 | equitably allocated among all stakeholders to meet the needs    |
|     |                                                 | of the society and environment."                                |
| 7   | Key Issues:                                     | -                                                               |
|     | Critical issues in water resources              |                                                                 |
|     | development and management in the basin-        |                                                                 |
|     | that constrain economic and social              |                                                                 |
|     | development. (e.g. Water Rights, Need for       |                                                                 |
|     | Negotiations, Levels of participation, disaster |                                                                 |

|   | management, Equity, Water sharing, Allocat |                                                                  |
|---|--------------------------------------------|------------------------------------------------------------------|
|   |                                            |                                                                  |
|   |                                            |                                                                  |
|   |                                            |                                                                  |
|   |                                            |                                                                  |
| 8 | Enabling instruments- Law/ Policy/         | MASL Parliamentary Act No. 23 of 1979 and other Gazetted         |
|   | Economic & Financial Measures for          | Regulations, National Environment Act of 1988, Irrigation        |
|   | introducing IWRM in the basin              | Ordinance, Flood Protection Ordinance National Water             |
|   |                                            | Supply & Drainage Board Law No. 2 of 1974, Agricultural          |
|   |                                            | Land Law No. 42 of 1973, Forest Ordinance                        |
|   |                                            | National Water Recourses Policy (NWRP) - The National            |
|   |                                            | Water Resources Policy (NWRP) should adopt effective             |
|   |                                            | measures to regulate water allocations, prepare plans for        |
|   |                                            | integrated water resources development, management and           |
|   |                                            | conservation of water resources while introducing legislation    |
|   |                                            | to recognize the rights of water users and grant water rights to |
|   |                                            | them. The national water resources policy should be based        |
|   |                                            | on following principles.                                         |
|   |                                            | a) Water is a basic need for all living beings                   |
|   |                                            | b) Need to assure safe water for the present and future          |
|   |                                            | generation as a fundamental right of all citizens                |
|   |                                            | c) Water is a limited and invaluable resource                    |
|   |                                            | d) Water for domestic needs will be given priority in            |
|   |                                            | allocating water from existing resources and developing and      |
|   |                                            | managing new water resources                                     |
|   |                                            | e) River Basin, Sub Basin, Connected Basins will be the          |
|   |                                            | hydrological unit for planning and management of water           |

| resources f) Water rights will be                             |
|---------------------------------------------------------------|
| recognized with regulations and governing allocations in line |
| with national priorities g)                                   |
| Groundwater extraction will be monitored and appropriately    |
| regulated through the relevant institutions including in      |
| groundwater sensitive areas                                   |
| h) Management of water resources will be developed or         |
| decentralized as provided in the constitution                 |
| i) All developers including state agencies need to obtain     |
| the approval of National Water Resources Authority (NWRA)     |
| for development of water resources                            |
| j) The state will promote the integration of gender           |
| concerns in policies plans and programs in water sector       |
| activities Through this process, the NWRP anticipate          |
| empowering stakeholders in the decision making process for    |
| sharing the harnessed resources. The proposed Water Act is    |
| harmonized with the existing legislations and it has to be    |
| improved to cover the constitutional, organizational and      |
| operational functions in achieving the sustainable            |
| development through integrated water resources                |
| management and it should ensure that the agreed policies      |
| would be implemented                                          |

